
Proceedings ascilite Singapore 2007: Full paper: Butler and Morgan 99

Learning challenges faced by
novice programming students
studying high level and low
feedback concepts

Matthew Butler and Michael Morgan
Faculty of Information Technology
Monash University

This paper describes an investigation into the nature of the academic problems that face
novice programming students. These learners are required to demonstrate competencies in
high-level abstract principles of programming and logic, such as program design and OOP
principles, which are conceptually difficult. During the programming task learners receive
relatively high levels of feedback on low level issues, such as syntax rules, but tend to
receive low levels of feedback on conceptually more difficult issues. This problem tends to
be exacerbated by the trend of learners to study independently, outside the classroom or in
online modes, which further reduces the options available for quality feedback on high-level
issues. This paper analyses the results of a survey given to students enrolled in an
introductory programming unit across three campuses at Monash University in 2007. The
survey focused on student perceptions of the relative difficulty in understanding and
implementing both low level-programming concepts, such as syntax and variables, and
high-level concepts, such as OOP principles and efficient program design. An analysis of
the approximately 150 responses has indicated that a significant percentage of students
experienced difficulties in high-level concepts. Also while many students may indicate an
understanding of the principles of many high level concepts more students reported
experiencing difficulty in implementing such concepts. This indicates that many students
may achieve a level of understanding allowing near transfer of domain knowledge but fail
to reach a level of understanding that enables far transfer.

Keywords: programming curriculum, novice programmers, feedback

Introduction

In order for curriculum designers and educators to ensure that new Information Technology students can
make as smooth a transition as possible into their new discipline, it is important to understand the core
problems that students studying introductory programming encounter. Traditionally first year introductory
programming courses have a relatively high fail rate. Hagan et.al (1997) highlighted this concern 10 years
ago, indicating that “programming was considered the most difficult and least interesting subject by most
first year students in all Computing courses at Monash University” (pg. 37). Bennedsen and Caspersen
(2007) sought to validate this concern with a survey of universities and colleges worldwide. Although
they could not confirm that failure rates were abnormally high in programming units, they did find that
pass rates were on average of the order of only 67%. The causes of such high fail rates may be related to a
number of factors. This paper focuses on three main elements:

1. The conceptual difficulty of various elements of the curriculum,
2. The level of feedback that is available to students with regard to various components of the

programming task,
3. How patterns of study, namely low levels of face-to-face contact experienced by independent learners,

impact on the first two issues.

The hypothesis that this study seeks to examine is that student experience conceptual difficulties with
elements of the curriculum that require abstract and logical thinking but it is precisely these elements of
the curriculum for which little feedback is available, therefore student performance in these areas is poor.
Additionally it is hypothesised that this poor performance may be exacerbated by independent study
patterns.

Proceedings ascilite Singapore 2007: Full paper: Butler and Morgan 100

Background

First year Information Technology students face a wide variety of challenges. Not only must they contend
with the pressures of commencing tertiary education, with all the issues associated with adjusting from
secondary to university study, they also are confronted with immersing themselves into a discipline in
which they may not have had any prior formal education and for which they must essentially learn a new
language, a programming language. For many Information Technology courses, a rudimentary
background in mathematics and English is all that is required to enter the degree and commence study.
However a first semester of study may encompass such units as Computer Systems, Data
Communications and Computer Programming. Students may find themselves in unfamiliar territory and
these computing fundamentals can prove to be a learning challenge, particularly introductory
programming courses.

Introductory computer programming has been the subject of many research papers, focusing on a wide
range of technical and educational aspects. Giangrande (2007) highlights that the issues include “which
programming language should be used, which methodology should be taught, which topics should be
included” (pg. 153). Debates over Structured versus Object-Oriented driven curriculum still continue to
divide computing educators. As Lister et. al. (2006) discuss, “The SIGCSE community is currently
sustaining a very vigorous debate on the teaching of programming, with particular regard to the question
of objects first” (pg. 147). Research by Schulte and Bennedsen (2006) showed that 79% of surveyed
universities covered Object Oriented concepts, with 52%, slightly over half, covering objects first (pg.
20). The debate also rages as to the appropriate choice of programming language, with many favouring
widely used languages such as C++ and Java while others advocate ‘conceptual’ languages or alternate
approaches such as the use of games or toolkits in order to focus on logical thinking and implementation.
Schulte and Bennedsen (2006) showed that Java is clearly the most used programming language, in the
order of 52% across the universities surveyed (pg. 20). Even though this may be the case, many
researchers argue against the use of Java. Hadjerrouit (1998) provides a critical evaluation, highlighting
the inherent difficulties in using Java as a first programming language, Crawford and Boese (2005)
suggest the use of the multimedia language ActionScript as a solution, while others (Powers et. al. 2006;
Gross and Powers 2005) choose independent toolsets as a means of introducing students to programming
concepts.

Regardless of what choices are made for programming approach, language and development
environment, in the classroom the students will still face a challenging combination of abstract
programming concepts and logical reasoning processes. These abstract principles and logical reasoning
must be applied to solve a variety of real world problems in a variety of contexts. Therefore rote learning
is near impossible in the programming context. Although students can arm themselves with an array of
programming examples and constructs, each programming problem will have a unique solution
comprised of the programming building blocks they have studied. This applied programming, which can
be equated to far transfer in learning theory, is fundamental to successful learning. Bruce (2005)
highlights a concern that “weaker students entering CS 1 have a very difficult time dealing with the
additional layers of abstraction resulting from the use of objects and design patterns” (pg. 111).

This paper presents results of a survey of student perceptions while studying a first semester introductory
programming unit, FIT1002 Computer Programming at Monash University, where students learn the Java
programming language. The students enrolled in this unit represent a wide range of sub-disciplines in the
Information Technology field and the unit is delivered at a number of the university’s campuses. The next
section of the paper outlines the context of the study at Monash University and goes on to raise the three
main issues under investigation; the conceptual complexity of elements of the curriculum, the levels of
feedback available to students, and issues associated with independent learning.

Conceptual complexity in introductory programming

Monash University is an internationally recognised institution based in Melbourne, Australia, and is the
largest university in Australia. Its Faculty of Information Technology was the first stand-alone IT faculty
in Australia, and is in fact the only ‘Group of 8’ university to have a dedicated IT faculty. In 2005 the
faculty undertook a considerable redesign of its undergraduate courses to cater for a down turn in student
demand and shifting industry needs. Consultation with industry stakeholders and the Australian Computer
Society (ACS) resulted in a set of core units, common to all undergraduate IT courses. These core units
cover fundamental IT knowledge, including introductory programming.

Proceedings ascilite Singapore 2007: Full paper: Butler and Morgan 101

The core unit FIT1002 Computer Programming is one of four subjects that new students undertake in
their first semester of study. The aim of the unit is to provide these new students, some of whom have no
prior programming experience, with the fundamentals of problem solving, program design and
implementation in the context of the Java programming language. As this is an introductory unit, the
focus is on programming fundamentals and includes such topics as Algorithm Design, Structured
Programming Techniques and Control Structures, Object Oriented Design and Programming, and Testing
and Debugging Approaches. These topics are consistent with those shown by Shulte and Bennedsen
(2006) in their survey as the topics considered most ‘relevant’ (pg. 22). In addition, objectives of the unit
relate to much broader elements, such as ‘adopt a problem-solving approach’ to ‘design object oriented
solutions’, objectives that focus on principles rather than relating specifically to the Java programming
language. As a result the assessment reflects this diversity, with assignment work covering Algorithm
Design (Assignment 1), Structured Programming Implementation (Assignment 2) and Object Oriented
Design and Implementation (Assignment 3). The examination for this subject covers the entire range of
these topics.

As the unit is considered introductory and covers both basic programming paradigms (structured and
object oriented), the curriculum spans from low to high levels of conceptual complexity. It is one of the
challenges of teaching programming that the balance must be found between providing support for the
low level issues, such as the syntax needed to implement programming functions that allow students to
see concrete examples of programs work in action, while still covering highly complex conceptual areas
such as object orientation, that allow efficient program design techniques. The level of conceptual
difficulty of the subject matter is an important consideration in the delivery of learning materials. In the
programming domain issues such as Syntax operate at a low level of conceptual difficulty, as although
there is a level of semantic understanding required the knowledge is clearly defined, easily verifiable, and
at an introductory level the range of syntax covered is not that large. A loop or decision may be
considered as a mid level concept, as while there is indeed a conceptual element to their function, the leap
from concept to implementation is not great. However the theory of classes and objects as well as their
role in program design can be seen as a high level concept as it operates at a level very far removed from
their actual application. Although these higher level concepts can be broken up into appropriate segments
for easier understanding, it appears as though the leap from understanding these concepts to applying
them can be very difficult for novice programmers. Lahtinen et. al. (2005) suggest this very issue, that
“the biggest problem of novice programmers does not seem to be the understanding of basic concepts but
learning to apply them” (pg. 17). Winslow (1996) expands on this idea, highlighting that novices are
“limited to a surface knowledge of subject” while experts “have a deep knowledge of their subject which
is hierarchical and many layered” (pg. 18).

On reviewing the curriculum set for FIT1002 various components of the course can be assessed in terms
of the conceptual difficulty of the subject matter. Table 1 shows the approximate arrangement of the
curriculum and lists the notional level of conceptual difficulty of the subject matter expected by the
authors of this paper based on the nature of the subject matter involved.

Table 1: FIT1002 Curriculum and notional conceptual difficulty

Curriculum Conceptual
Difficulty

Algorithms High
Syntax Low
Variables Mid
Decisions and Loops Mid
Arrays Mid
Methods High
OO Concepts High
Overall Program & Object Design High
Testing and Debugging Mid

The indicator given to the conceptual difficulty of the curriculum is notional and is based simply on the
elements of categorisation raised above, along with anecdotal evidence. The survey given to students will
be used to ascertain if this categorisation is correct from the perspective of the students enrolled in
FIT1002 Computer Programming.

Proceedings ascilite Singapore 2007: Full paper: Butler and Morgan 102

Feedback in introductory programming

One significant problem in applying high level concepts for novice programmers may be in the levels of
feedback that are provided to these students during the programming process. Different types of feedback
can be obtained by novice programming students, including:

 Feedback from teaching staff
 Feedback from the development environment
 Feedback from testing

Feedback from teaching staff is fundamental to the success of students at an introductory level. This
comes primarily from in class interactions, whereby staff can help guide students through the learning
process, critique progress, and answer queries students may have. This feedback can also be offered
during consultation sessions outside of class time. Staff feedback also comes in the form of assessment of
programming assignment work, where comments on design and code quality can be given along with
assessment of functionality.

Feedback from the development environment and testing can be received by the student both in and
outside of the teaching environment. The development environment provides very specific feedback on
programming syntax and low-level code construction. Students are informed when trying to compile a
program if there are syntactic problems, and are provided with basic messages to help in rectifying those
problems. The development environment can also provide feedback on concepts such as loops, decisions,
and other programming concepts, however this feedback relates primarily to implementation rather than
fundamental design. Testing also provides base level feedback, in this case if the program actually
performs the expected tasks and produces the required output. By considering suitable test data and
expected outcomes, students can see if their programs are functioning correctly.

If this feedback is considered in conjunction with the prior discussion of high and low level concepts then
problems begin to emerge. Feedback from the development environment and testing relate only to mid to
low level concepts, while in contrast teaching feedback covers high-level concepts. A development
environment cannot offer feedback on overall program design, while guidance on object oriented
principles is limited solely to syntactic implementation. This is of considerable concern given researchers
such as Eckerdal et.al. (2006) highlight that a “fundamental goal of undergraduate computer science
programs is that graduates be able to design software systems” (pg. 403)

Study patterns

These issues are amplified when coupled with a distinct change in study pattern of students that results in
less face to face teaching contact. Anecdotal and observational evidence suggests that students now spend
much less time on campus, preferring to study off-campus in distance education modes. It is clear that
there are now increased pressures on students of work and family, meaning that much less time is spent
on campus in general. Also, computer hardware and software used to be considerably more expensive,
however costs have decreased dramatically in the last decade. As a result many students have hardware
that in many cases is superior to that on campus and so have less need to spend time on campus in order
to access equipment. These factors generate several concerns with the teaching and learning process.
With students spending more time off-campus than ever before, an opportunity for high-level feedback is
being significantly compromised. How can students be sure that their programs are appropriate from a
design perspective if the only feedback they receive outside the classroom relates to implementation?

Survey design

In order to support the literature and anecdotal evidence relating to these concerns with conceptual
complexity, feedback and study patterns, a survey of students studying FIT1002 Computer Programming
at Monash University was conducted in May 2007. The unit has approximately 500 students enrolled
across 6 campuses.

The survey consisted of a number of quantitative and qualitative questions, split into 5 sections. Section A
asked for preliminary information relating to the student, such as age, gender, student type, enrolled
undergraduate degree. The main objective of this section of the survey was to find out the degree being
studied, as this was expected to provide insight into the differing challenges perceived by students with
varying IT focuses.

Proceedings ascilite Singapore 2007: Full paper: Butler and Morgan 103

Section B contained questions relating to the students general aptitude and prior programming experience.
As the research focuses on specific challenges relating to novice programmers, it was important to obtain
an understanding of the aptitudes and natural inclinations of the students. It was hoped that this would
allow the researchers to obtain an insight into the extent to which student aptitude and past experience
with programming impacted on their perceived understanding of curriculum.

Section C asked students to comment and reflect on their study patterns for the unit. Simple measures of
how much time was spent performing each type of study were collected, along with the students
perceptions of what the most (and least) important study modes were and their reasons for making this
judgement.

Section D was arguably the most important section, asking students to self-evaluate both their
understanding and ability to apply key introductory programming concepts. Students were first asked to
rate on a 7-point scale the perceived level of difficulty of understanding of each major topic in the
curriculum. In a separate question, over the page, students were then asked to rate using the same scale
their perceived level of difficulty in implementing each aspect of the curriculum. Lahtinen et. al. (2005)
suggest that “students overestimate their understanding” (pg. 17), therefore such a distinction may guide
students into a deeper level of self-assessment. It was also intended that this section would indicate if
indeed higher-level concepts such as program design proved to be more challenging to students. An
understanding of the distinctions between near and far transfer of knowledge was therefore the aim of this
series of questions. It should be noted that curriculum topics were kept fairly generalised so that students
did not have to reflect on too many different elements. It is assumed that future data collection will focus
on specific parts of the curriculum in greater detail.

The final section of the survey provided the students with an opportunity to comment on overall issues in
studying the programming unit (FIT1002). This was intended to capture any thoughts that may not have
been covered by the previous questions.

The survey was offered to students at the 3 Melbourne based campuses of Monash University. These
cohorts were chosen for several reasons:

 It provided access to approximately two-thirds of the students enrolled in the unit,
 The ability to survey students enrolled in a number of different undergraduate degrees, ranging from

Computer Science to Business Systems to Multimedia,
 The ability to offer the survey easily in class, rather than require online or e-mail submission.

As a result, students studying the unit at 3 campuses (Gippsland, Malaysia and South Africa) were not
surveyed. This was not seen as problematic, as a diverse range of students could be obtained by focusing
on the 3 metropolitan campuses. This diversity encompassed both ‘prior skills’ and ‘focus of study’ in a
broad range of IT disciplines. Two of the campuses not surveyed were international campuses (located in
Malaysia and South Africa) and while these campuses were of definite interest, in terms of the research as
they could provide insight into some cultural issues, logistical issues prevented the delivery of the survey
to these cohorts at the time. However a significant number of international students were surveyed, so the
lack of results from the international campuses was not considered a major issue with this study.

Surveys were administered in the revision lecture for the unit, in final week of the 13-week semester, at
each campus. Students received an explanatory statement and consent form, and had complete freedom to
give or withhold consent to participate. The survey timing was deliberate so as to hopefully achieve the
highest possible response rate, but most importantly to survey the students in a period of self-reflection
about the nature of the content delivered in the unit due to the examination revision process.

Data analysis and summary of survey results

Of the total number of students enrolled in the unit at the metropolitan campuses surveyed (379), 173
responses were obtained, giving a response rate of 46%. Of these 173 responses, after the data collation
process, 167 surveys (n=167) contained usable data, with only 9 being blank or containing responses that
could not be used due to factors such as extreme outliers or inappropriate comments. Of the 167 usable
surveys, 27% were fully completed, with the remaining surveys containing some questions that were not
answered. For the purpose of initial data analysis these can be counted, as questions not answered were
predominantly those of a qualitative nature, whereas questions asking for quantitative responses, such as
time spent, ratings, rankings, and the like were generally fully answered. This may be something to

Proceedings ascilite Singapore 2007: Full paper: Butler and Morgan 104

consider for further analysis, whether non-responses to qualitative questions was due to time constraints,
the length of the survey, or a difficulty in the self-reflection task.

Initial analysis of data has focused on the quantitative elements of the survey. The survey was designed
such that qualitative questions could provide further insight into scores and ratings given by the
participants. As many of the quantitative questions require the participants to reflect on their experiences
with the programming unit and its curriculum, open ended questions provided the ability to seek
clarification as to why certain responses were made. For a preliminary discussion of the survey findings
however, many initial conclusions could be found solely using the quantitative data. As the research is
focusing on student issues with conceptual complexity, the bulk of discussion will be afforded to this
area.

To provide a background to the responses, some preliminary information about the participants can be
identified based on responses to the initial questions in the survey. In summary:

• Approximately 35% had no prior programming experience at all.
• Participants indicated that on average they spent 9.75 hours per week studying the unit. It should be

noted that students enrolled in this unit were expected to attend 5-6 hours per week in scheduled
lectures, laboratories and tutorials. Monash University’s minimum expectation of student workload
per unit is 12 hours.

• On average students indicated that they spent approximately 1 hour of their time on campus in
independent study mode, approximately 2.5 hours off campus in independent study mode and
approximately 0.5 hours in peer group study mode.

• Laboratory classes were considered the most important study activity, placed first by 31% of
participants. Lectures were second, placed first by 28% of participants. It should be noted that study
with peers was rated most important by only 3% of respondents. This order of importance was also
reflected when taking into account a weighted analysis of all responses.

• Qualitative responses indicate that laboratory sessions were seen as most important in terms of
feedback as they provided an opportunity for participants to seek help. This is important to note in
consideration of levels of student feedback for various components of the curriculum.

• Lectures were seen as important in general because they provided the participants with the overview
of the curriculum to be covered in each week. This appears slightly at odds with research by the likes
of Huet et. al. (2004) who suggest that “students… are often sceptical of the effectiveness of this
technique” (pg. 5)

As indicated in the discussion of the survey design however, the self-evaluation of the students with
regard to the curriculum of the unit was the key set of questions. It was the intent of this section to
determine if indeed students expressed difficulty with curriculum of a more conceptual nature, and if a
shift in perceived difficulty occurred in applying their understanding of topics to real programming
problems.

With regard to perceived understanding of the curriculum, the topic of Object Oriented Concept was seen
as the most challenging. Table 2 below summarises the average of the responses (between 1 and 7) for
each topic:

Table 2: Average difficulty rating for understanding curriculum (n=167)

Topic Conceptual
Difficulty

Average Rating
(out of 7)

Algorithms High 1.98
Syntax Low 2.56
Variables Mid 2.14
Decisions and Loops Mid 2.53
Arrays Mid 4.17
Methods High 3.92

OO Concepts High 4.92
OO Design High 4.52
Testing Mid 3.60

Proceedings ascilite Singapore 2007: Full paper: Butler and Morgan 105

Results show that topics that can be considered to be of a more conceptual nature were perceived to be
more difficult to understand for novice programming students. Table 1 earlier notionally identified Object
Oriented concepts along with Object Oriented design as two areas of high conceptual difficulty. This
categorisation is consistent with the evaluation provided by the survey participants. It is also important to
note that the second and fourth highest ranked topics related specifically to program design. Program
design was identified in section 4 of this paper, Feedback in Introductory Programming, as a
programming area that provides little feedback to the student.

Perceived ability to implement these elements of the programming curriculum produced a similar set of
results, as can be seen in Table 3:

Table 3: Average difficulty rating for implementing curriculum (n=167)

Topic Conceptual
Difficulty

Average Rating
(out of 7)

Algorithms High 2.21
Syntax Low 2.50
Variables Mid 2.32
Decisions and Loops Mid 2.68
Arrays Mid 4.19
Methods High 4.10
OO Concepts High 5.12

OO Design High 4.60
Testing Mid 3.87

Again, the highest rated elements of the curriculum were those of a higher conceptual nature. Arrays may
be considered the exception, ranked the third highest in both tables of results. This is not considered
surprising however, as arrays can be seen as applied loops combined with more detailed processing logic,
providing significant challenge for novice programmers.

What can also be seen from the two tables is the increase in difficulty rating for almost all elements of the
curriculum when going from understanding to implementation. Table 4 below shows the average changes
in score as both a figure out of 7 and as a percentage:

Table 4: Average shift in difficulty rating from understanding to implementation

Topic Conceptual
Difficulty

Average Rating
Increase (out of 7)

Percentage Increase

Algorithms High 0.23 3.36
Syntax Low - 0.06 - 0.84
Variables Mid 0.18 2.64
Decisions and Loops Mid 0.14 2.05
Arrays Mid 0.03 0.37
Methods High 0.18 2.61
OO Concepts High 0.20 2.80
OO Design High 0.09 1.24
Testing Mid 0.27 3.92

The percentage increases are only minor, however are consistent across all topics aside from syntax. What
is important to note is that this is also consistent with earlier discussion relating to levels of feedback
afforded to certain parts of the programming process. Program design was acknowledged as an aspect
providing little feedback and problems inherent in this are indicated by both the difficulty ratings and the
increase in rating from understanding to implementation. Syntax was highlighted as an element of the
programming curriculum that is afforded high levels of feedback through the programming environment.
This provides an insight into why it may be perceived as slightly easier to implement syntax. It is
however a minor shift so may not be considered to be of true significance. What can be considered
important however is that it did not show a positive shift when all other elements of the curriculum did.

Proceedings ascilite Singapore 2007: Full paper: Butler and Morgan 106

Conclusions and further research

An analysis of the survey data has provided a large number of insights into study habits and challenges
faced by novice students. As indicated in the previous section it was clear that elements of program
design proved to be among the most challenging aspects of introductory programming curriculum. Indeed
the elements of the curriculum of a highly conceptual nature proved to be acknowledged as the most
challenging, both from an understanding and implementation perspective.

A shift in acknowledged difficulty from understanding to implementation could also be seen in almost all
parts of the curriculum. The only element not to experience this shift was syntax. This is an aspect of
programming curriculum that provides a very high level of feedback to the students, possibly a reason
why students feel a little more comfortable in working with programming syntax than their conceptual
understanding of it.

The results presented are only a small part of more a thorough analysis of the data that is in progress. The
most important direction for future research involving further surveys of students will focus on areas of
the curriculum that contain concepts that have a high level of conceptual difficulty with the aim of
clarifying exactly why students find these elements conceptually difficult. Students have commented on
general topic areas only at this stage, therefore further breakdown of curriculum topics, particularly those
relating to object oriented concept and design must be done to further investigate these problems.

This data provides an insight into student problems with the introductory programming curriculum. It is
clear that issues relating to high concept areas and the limited feedback opportunities that they afford
must be addressed. As feedback is inherently limited by programming environments and the like and the
greatest opportunity for feedback comes from in-class assistance, consideration should be given to
teaching methods that can provide feedback opportunities to the student both in and outside the
classroom. A teaching method that can scaffold the student learning and guide them through a process
such as program design may be invaluable to reducing the perceived difficulty of high-level concepts in
introductory programming units.

References

Bennedsen, J. & Caspersen, M. E. (2007), Failure Rates in Introductory Programming, ACM SIGCSE
Bulletin, Volume 39 Issue 2 (pp. 32-36)

Bruce, K. B. (2005), Controversy on how to teach CS 1: a discussion on the SIGCSE-members mailing
list, ACM SIGCSE Bulletin, Volume 37 Issue 2 (pp. 111-117)

Crawford, S. & Boese, E. (2006), ActionScript: a gentle introduction to programming, Journal of
Computing Sciences in Colleges, Volume 21 Issue 3 (pp. 156-168)

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M. & Zander, C. (2006), Can graduating students
design software systems?, ACM SIGCSE Bulletin , Proceedings of the 37th SIGCSE technical
symposium on Computer science education SIGCSE '06, Volume 38 Issue 1 (pp. 403-407)

Giangrande, E. (2007), CS1 Programming Language Options, Journal of Computing Sciences in
Colleges, Volume 22 Issue 3 (pp. 153-160)

Gross, P. & Powers, K. (2005), Evaluating assessments of novice programming environments,
Proceedings of the 2005 international workshop on Computing education research ICER '05 (pp. 99-
110)

Hadjerrouit, S. (1998), Java as First Programming Language: A Critical Evaluation, ACM SIGCSE
Bulletin, Volume 30 Issue 2 (pp. 43-47)

Hagan, D., Sheard, J. & Macdonald, I. (1997), Monitoring and evaluating a redesigned first year
programming course, ACM SIGCSE Bulletin , Proceedings of the 2nd conference on Integrating

technology into computer science education ITiCSE '97, Volume 29 Issue 3 (pp. 37-39)
Huet, I. Pacheco, O. R., Tavares, J. and Weir, G. (2004), New Challenges in Teaching Introductory

Programming Courses: a Case Study, 34th ASEE/IEEE Frontiers in Education Conference (pp. T2H-5
- T2H-9)

Lahtinen, E., Ala-Mutka, K. & Järvinen, H. (2005), A study of the difficulties of novice programmers,
ACM SIGCSE Bulletin , Proceedings of the 10th annual SIGCSE conference on Innovation and
technology in computer science education ITiCSE '05, Volume 37 Issue 3 (pp. 14-18)

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B., Hitchner, L., Luxton-Reilly,
A., Sanders, K., Schulte, C. & Whalley, J. L. (2006), Research perspectives on the objects-early
debate, Annual Joint Conference Integrating Technology into Computer Science Education, Working
group reports on ITiCSE on Innovation and technology in computer science education (pp. 146-165)

Proceedings ascilite Singapore 2007: Full paper: Butler and Morgan 107

Powers, K., Gross, P., Cooper, S., McNally, M., Goldman, K. J., Proulx, V. & Carlisle, M. (2006), Tools
for teaching introductory programming: what works?, ACM SIGCSE Bulletin , Proceedings of the
37th SIGCSE technical symposium on Computer science education SIGCSE '06, Volume 38 Issue 1
(pp. 560-561)

Schulte, C. & Bennedsen, J. (2006), What do teachers teach in introductory programming?, Proceedings
of the 2006 international workshop on Computing education research ICER '06 (pp. 17-28)

Winslow, L. E. (1996), Programming pedagogy - a psychological overview, ACM SIGCSE Bulletin,
Volume 28 Issue 3 (pp. 17-25)

Mr Matthew Butler
Berwick School of Information Technology, Monash University, PO Box 1071, Narre Warren, VIC, 3806
Ph: +61 3 9904 7163, matthew.butler@infotech.monash.edu.au
Dr Michael Morgan
Berwick School of Information Technology, Monash University, PO Box 1071, Narre Warren, VIC, 3806
Ph: +61 3 9904 7155, michael.morgan@infotech.monash.edu.au

Please cite as: Butler, M. & Morgan, M. (2007). Learning challenges faced by novice programming students
studying high level and low feedback concepts. In ICT: Providing choices for learners and learning.
Proceedings ascilite Singapore 2007. http://www.ascilite.org.au/conferences/singapore07/procs/butler.pdf

Copyright © 2007 Matthew Butler and Michael Morgan.
The authors assign to ascilite and educational non-profit institutions a non-exclusive licence to use this document for
personal use and in courses of instruction provided that the article is used in full and this copyright statement is
reproduced. The authors also grant a non-exclusive licence to ascilite to publish this document on the ascilite web site
and in other formats for Proceedings ascilite Singapore 2007. Any other use is prohibited without the express
permission of the authors.

