
811

Teaching programming with objects

Geoffrey G. Roy and Jocelyn Armarego
School of Engineering Science

Murdoch University

This paper describes a new tool (P-Coder) that can assist in the teaching of Object– Oriented
(O-O) programming concepts to novices. It builds on a pseudocode model that focuses on the
most basic computational principles of sequence, iteration, selection and recursion. These are
developed within an O-O framework that provides several views of the model: a Design View
where the user interacts with the model to design the program (algorithms and structure); a
Class View where the class structure can be visualised; a Code View where the generated code
can be inspected, compiled and executed; and an Object View where objects can be instantiated
from the defined classes.

P-Coder provides a complete environment to demonstrate and implement many O-O concepts
for novice users. There is a focus on developing an understanding of basic principles through a
graphic/text based pseudocode notation representing the key program elements in a tree
structured diagram.

Users are able to design and build complete programs, compile and execute them in the normal
way. Interactive object instantiation is also supported, allowing users to create, inspect and
manipulate objects in their runtime state. This provides a useful perspective in teaching where
the distinctions between Classes and Objects are often left confused.

Keywords: pseudocode, programming, novices, object-oriented

Introduction

Teaching programming has been recognised as a difficult task, even from the early days of digital
computation. The structured approach (Dijkstra, 1972) offered the first really formal approach once it was
recognised that it was necessary to improve the quality of software from design/development,
performance and maintenance perspectives. In more recent times Object-Oriented (O-O) approaches have
opened up a new set of issues (Kölling, 1999; Northrop, 1992; Osborne, 1992), in particular just how and
when O-O concepts should be taught. The purists will argue that O-O should be taught from day one
(Adams & Frens, 2003; Cooper, Dann, & Pausch, 2003; Duke, Salzman, Burmeister, Poon, & Murray,
2000; Kölling, Koch, & Rosenberg, 1995), while others (Decker & Hirshfield, 1994) take a contrary
view. Lewis (2000) presents a number of myths surrounding the use and application of O-O technologies
and its associated pedagogies. One of these says that: “Object-orientation and procedure concepts are
mutually exclusive”.

Lewis argues that the key underlying principles in O-O, including modularity and encapsulation, are
equally well applied to procedural programming, though the implementing languages do not often enforce
them. Lewis’ fifth myth is concerned with control structures: “Control structures and objects are in
contention”. He argues that the low level computational primitives are neither procedural nor object-
orientated, but they are orthogonal to the higher level design (O-O or procedural) concepts. As a result
these lower level concepts must be taught in their own right and cannot be deferred, or neglected, in the
early phases of a teaching programme. It has been claimed that O-O concepts more closely align to
natural human problem solving processes (Decker & Hirshfield, 1993; DeClue, 1996) and thus are
potentially more readily appreciated by the novice programmer. This argument often appears as a
justification for teaching O-O principles early rather than later in an educational programme. Duke et al
(2000) offer a more penetrating view. They argue that while some elements of O-O architectures (e.g.
message passing and class re-use) should be taught up front, much of the detail of object construction can
be deferred until later in the course. Duke et al (2000 p 84) also state that:

… a first subject needs to emphasise the logical relationships between lower level concepts
and how to capture these within the code.

Roy & Armarego

812

The first author’s own teaching experience supports this view, and in particular Duke et al (2000 p 84)’s
conclusion that:

... the most significant difficulty facing beginners: using basic programming constructs such
as while-loops and boolean expressions to capture a system’s internal logic.

Regardless of what programming paradigm is adopted, early progress and ultimate success for the novice
will be closely related to how well the fundamentals of computational principles (i.e. sequence, iteration,
selection and recursion) are understood. Unfortunately, regardless of which paradigm is adopted these
basic principles are often not well understood.

The approach to be presented here fits within an O-O paradigm, with Java as a target language vehicle. It
offers, however, an early focus on the basic computational processes. The P-Coder tool, which has been
developed for this purpose, encourages (requires) that students develop their first appreciation of
computation from these principles. While concepts of classes (their attributes and operations) are
described early, most actual programming is done within a highly constrained environment. This hides
much of the complexity from the novice so they can focus on developing knowledge of the principles.
Over time the “training wheels” are gradually removed.

Most approaches to teaching programming skills require an early introduction of language syntax. This is
necessary to allow even the simplest of program to successfully compile and execute. P-Coder provides
considerable help in this phase of learning by restricting the available language elements. It also provides
considerable support to assist the novice programmer to identify and construct their very first program
statements. The early focus is on computational principles. As the novice’s experience grows additional
capabilities can be enabled thus providing a more open programming environment.

The P-Coder framework

The P-Coder model is the central element of the P-Coder framework shown in Figure 1. It supports a
number of Views of the model and a variety of transformations that makes the software being developed
accessible (visible, testable and usable). An introduction to P-Coder and its pseudocode based modelling
paradigm is given elsewhere (Armarego & Roy, 2004).

Design View

Model
(.xml)
File

P-Coder
Model

Class View

Code View

Source
(.java)

File

Compiled
(.class)

File

Object
Instantiation

Execute
Inspect

and
Evaluate

Ext JVM

Object View

Figure 1: The P-Coder modelling framework

Roy & Armarego

813

The environment supports four Views of the program being developed:

1. The Design View: where the model is created, visualised and edited, with a focus on algorithm and
structure

2. The Class View: where the class structure can be displayed and edited showing the class associations
and dependencies

3. The Code View: where the actual program code is created, made readable, compiled and executed as
required

4. The Object View: where the compiled classes can be instantiated as objects that can be inspected and
evaluated in an interactive fashion.

Each of these provides an alternative way of looking at the same model, and thus offers the potential of
explaining the underlying model from different perspectives.

Normally the Design View provides the primary specification interface where the user views, builds and
edits the model. The user can also create and edit program elements in the Class View. It is also possible
(with some limitations) to construct a model (described as a skeleton model) from a set of existing source
files. The skeleton model will contain the primary structure of the program (down to the method
definition level). The P-Coder model is based on an abstract tree structure using a pseudocode notation
combining both text and graphics as shown in Figure 2. Here we have a program (partially exposed) to
manipulate and display vectors showing the pseudocode notation in the Design View.

Figure 2: The Design View in P-Coder

Roy & Armarego

814

The P-Coder tools offers a graphical/text based pseudocode notation using a tree structure to describe the
computational process. At the top level, nodes in the model denote Packages and Classes. Classes contain
class attributes, and operations. Operations contain the computational primitives of sequence, iteration,
selection and recursion. The icons placed on each node are indicative of their semantics, while the added
note qualifies or clarifies the meaning for the program being developed. The notes are free text and form
part of the documentation in the code (but not the actual code).

Within a Method the computation proceeds down the tree, taking each right branch in turn until all
available branches of the tree have been explored. At the higher levels the order of nodes (Packages,
Classes and Methods) is not significant, but the same tree structure is maintained for consistency.
Nodes can be rolled up or out as required to control the complexity of the display and to allow attention to
be focussed on relevant parts of the model. A full range of interactive editing capabilities is also
supported. The complete P-Coder model is externalised as an XML formatted file.

From this model it is possible to build much of the actual code (and certainly its structure). Some
additional code segments must be added to complete the program. These are provided in node Details
Dialogs that are attached to each node in the model, like that shown in Figure 3.

Figure 3: An example node details in P-Coder

Figure 4(a) shows a small section of generated code from the Code View. It includes the pseudocode
notes (as comments with a special notation), the computational structure of the program, and the content
from the relevant Details Dialogs. Keeping the pseudocode notes integrated with the code ensures a
degree of literate programming (Knuth, 1984) is achieved. If required, the display of the notes can be
suppressed, as shown in Figure 4(b), where only the raw code is shown. Explicit comments can be added
to the model also, as comment nodes in the model. Typically, novice users are not permitted to edit the
code directly - all editing is done in the Designer View. This ensures that the Code View is always
consistent with the actual model definition.

Even before completing all the code segments it is possible to see much of the structure of the program in
the Class View. Once the classes, their attributes and operation signatures are defined, all the information
is in place to display the Class View as shown in Figure 5. Here we can see the “extends” relations and
the “uses” relations between the four classes in the package. Each class box in this diagram can be
expanded to show the attributes and operations within the class, and their respective properties as shown
in Figure 6 (just the MyVector Class that defines the basic vector definitions is shown here). The class
field definitions are shown together with the constructor and the class method signatures using a UML-
styled notation.

The association types that can be displayed in the Class View are:

• “extends” relations: to describe inheritance relationships between classes
• “uses” relations: to describe where one class instantiates objects from another class
• “implements” relations: to describe interface implementations.

The Class View thus provides a clear visual description of the model in an O-O sense, by showing the
structure of each class (attributes and operations) and the associations between classes. Changes in either
the designer view or Class View are immediately reflected in the other view.

Roy & Armarego

815

(a)

(b)

Figure 4: The code (partial) for the VectorAdd problem:(a) with pseudocode notes, (b) without
pseudocode notes

Figure 5: The Class View

Roy & Armarego

816

Figure 6: The expanded view of the MyVector class

The Class View is important as a means of displaying and explaining the associations that exist between
classes within the model. It also provides a precursor to later studies in software requirements and
architectures where professional CASE (computer Aided Software Engineering) tools and environments
are used.

Dealing with objects

When working with novices, the basic computational processes are introduced in the Design View. While
the Class View offers a view of the relationships between classes, it is the concept of the object that is
often most difficult to explain. To assist in this aspect of teaching it is possible to provide object
instantiation capabilities that can highlight these relationships.

Rosenberg and Kölling (1997), and more recently in relation to the BlueJ development environment
Kölling and Rosenberg (2002), also argue that class descriptions by themselves are not adequate to test
(and explain) the behaviour of the objects instantiated at runtime. They propose that instance creation
capabilities are necessary to allow effective testing to be undertaken. For novices, this approach also has
the great advantage of providing a view into the behaviour of the program, and its objects, that it not
otherwise possible. This approach has been adopted here.

In P-Coder the Object View provides these facilities:

• To instantiate objects from classes: this allows the user to create one or more Objects from a Class that
is included within the model

• To inspect objects, i.e. examine their fields and methods: this allows the user to observe the properties
of these objects. The names and values of Class fields can be inspected and the names and signatures
of Methods of the object are also visible

• To manipulate field values: items of Class data can have their values changed
• To execute Methods, passing arguments and capturing return values (and Objects) as required: i.e. the

user can request a Method to evaluate using the Class data, and any required argument values, and
then see the results of the computation and the returned values. For primitive data types the returned
values are typically shown to the user. For compound types, and if a matching Class is included in the
model, the user can capture the Object and save it in the Object View. This new Object can then be
inspected.

In this way the user can see a concrete view of the Object and how it relates to the Class from which it is
realised. The following examples demonstrate these features.

The Object View (see Figure 7) shows each Class in the model, and some other external classes. External
classes are typically subsets of the Java (and other) class libraries that can be included if they are used
within the model. In this figure, the MyVector Class has been selected; its fields and methods are then
shown in the panels on the right. Selecting the constructor and then providing values for the arguments,
and giving the new Object a name, will create an object based on this Class. Once created, the Object
appears in the Object View to the right of its associated Class (as shown in Figure 8). Further objects can
be created using the same Class constructor.

Roy & Armarego

817

Figure 7: Instantiating an object

Figure 8: Evaluating the dotProduct() method of vector1 and vector2

In Figure 8 we have selected the vector1 Object then evaluated its dotProduct() Method with vector2 used
as an argument for the method. The returned result is then shown to the user (as shown in Figure 9). If we
choose the add() Method of vector1, with vector2 as an argument, the returned result is a MyVector type
Object. Since the model knows about this type of Class, the returned Object can be captured (named
vector3) and saved as shown in Figure 10. Selecting this new Object will show its field values (mag and
angle) in the Class Data panel.

Where an Object is created from a Class that inherits properties from a parent Class, the class hierarchy
can be explored as shown in Figure 11. In this case the ScaledVectorWindow Class has been selected.
This Class is a child of the VectorWindow Class which is in turn sub-classed from JFrame, and so on. In
Figure 11 the complete class hierarchy is displayed. For the selected Class, the parent classes provide
fields and methods through inheritance. These can be loaded incrementally from the “Load” buttons, with
the inherited fields and methods being added to the panels on the right. In this way it is possible to

Roy & Armarego

818

explore the class hierarchy, identifying, inspecting data and evaluating methods as desired as the parent
classes are incrementally loaded.

Figure 9: The results of evaluating the dotProduct() method

Figure 10: Inspecting the fields

For novices it may be necessary to limit the class hierarchy that is made visible, as the full Java class
hierarchies are typically too complex (for the novice) to understand. P-Coder provides parameter settings
to facilitate this.

Configuring P-Coder for teaching

P-Coder has a range of configuration options specifically designed to facilitate teaching. They include:

Roy & Armarego

819

• Progressive access to the various model Views. For example restricting access to the Designer View
for early beginners, then adding the Code View or Object View, to provide extended capabilities as
learning proceeds

• Editing the Code View is normally disabled
• Access to the full Java class hierarchy in the Object View can be restricted
• A range of stylistic aspects can be controlled through parameters; including selected colours, some

user interface behaviours, and strict adherence to UML conventions
• Activity logging on a user by user basis for progress monitoring and analysis of learning styles and

processes
• Template models can be created to contain pre-set program elements with replaceable arguments (like

Program and Class names, key variables etc) that can be user specified when the template first loaded.

If configured in a teaching laboratory, the properties file can be located on a file server (read only) so that
the instructor can vary the settings during the progress of a course of study, thus providing additional
functionality in a timely fashion.

Figure 11: Exploring the class hierarchy

Summary

The P-Coder tool described here offers a range of capabilities in support of teaching O-O programming
and design principles. The underlying model can provide a complete description of a program, or part of a
program, including both low level (the basic computational elements) and higher level structures that are
reflective of an O-O approach. Together these can provide an effective approach to teaching. This is
achieved by providing a progressive exposure to syntax elements while focussing on computational
principles, and also by facilitating access to the internals of objects at run-tine. This brings a degree of
concreteness to what is otherwise rather abstract, especially the distinctions between classes and objects
that often confuse novices.

P-Coder is currently implemented to just produce Java code. It does not support the full Java language,
some of the more esoteric syntax forms are not implemented but this is unlikely to affect novices. P-
Coder is not intended for the production of large scale software systems: it has been tested only on
modest scale exercises (a few hundred lines of code). This is thought to be perfectly adequate for most
early teaching exercises. Currently we use BlueJ (Kölling & Rosenberg, 1996) for this purpose. BlueJ

Roy & Armarego

820

offers some of the capabilities of P-Coder (especially for interactive Object instantiation), but builds on a
more traditional text based approach to programming.

While P-Coder is intended for teaching novices it would be interesting to explore its use in the
development of more complex algorithms and program architectures for more experienced users. It is
freely available from the authors for evaluation and educational use.

References

Adams, J. & Frens, J. (2003). Object centered design for Java: Teaching OOD in CS-1. Paper presented at the
SIGCSE'03, Reno, Nevada, 19-23 February.

Armarego, J. & Roy, G. G. (2004). Teaching design principles in software design. Beyond the Comfort Zone:
Proceedings ASCILITE Conference, Perth, 5-8 December.
http://www.ascilite.org.au/conferences/perth04/procs/armarego.html

Cooper, S., Dann, W. & Pausch, R. (2003). Teaching objects-first in introductory computer science. Paper
presented at the SIGCSE'03, Reno, Nevada, 19-23 February.

Decker, R. & Hirshfield, S. (1993). Top-down teaching: Object-oriented programming in CS1. Paper presented
at the SIGCSE, Indianapolis.

Decker, R. & Hirshfield, S. (1994). The top 10 reasons why object-oriented programming can't be taught in CS
1. Paper presented at the SIGCSE'94, Phoenix, March.

DeClue, T. (1996). Object-orientation and the principles of learning theory: a new look at problems and
benefits. Paper presented at the SIGCES'96, Philadelphia.

Dijkstra, E. W. (1972). Structured Programming. Academic Press.
Duke, R., Salzman, E., Burmeister, J., Poon, J. & Murray, L. (2000). Teaching programming to beginners -

choosing the language is just the first step. Proceedings Australian Conference on Computer Science
Education, Melbourne.

Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97-111.
Kölling, M. (1999). The problem of teaching object-oriented programming, Part II: Environments. Journal of

Object-Oriented Programming, 11(9), 6-12. [verified 26 Oct 2004] http://www.mip.sdu.dk/~mik/papers/oo-
environments.pdf

Kölling, M., Koch, B. & Rosenberg, J. (1995). Requirements for a first year object-oriented teaching language.
Proceedings of 26th SIGCSE Technical Symposium on Computer Science Education, Nashville, Tennessee,
March. [verified 26 Oct 2004] http://www.mip.sdu.dk/~mik/papers/requirements.pdf

Kölling, M. & Rosenberg, J. (1996). Blue - a language for teaching object-oriented programming. Proceedings
27th SIGCSE Symposium on Computer Science Education, Philadelphia. [verified 26 Oct 2004]
http://www.mip.sdu.dk/~mik/papers/blue-paper.pdf

Kölling, M. & Rosenberg, J. (2002). BlueJ - The Hitch-Hikers Guide to Object Orientation (No. 2002 No 2):
The Maersk Mc-Kinney Moller Institute for Production Technology, University of Southern Denmark.
[verified 26 Oct 2004] http://www.mip.sdu.dk/~mik/papers/hitch-hiker.pdf

Lewis, J. (2000). Myths about object-orientation and its pedagogy. Paper presented SIGCSE 2000, Austin
Texas.

Northrop, L. M. (1992). Finding an educational perspective for object-oriented development. Paper presented
at the OOPSLA'92, Vancouver, 5-10 December.

Osborne, M. (1992). The role of object-oriented technology in the undergraduate computer science curriculum.
Paper presented at OOPSLA'92, Vancouver, 5-10 December.

Rosenberg, J. & Kölling, M. (1997). Testing object-oriented programs: Making it simple. Paper presented at
SIGCSE'97, California.

Please cite as: Roy, G.G. & Armarego, J. (2004). Teaching programming with objects. In R. Atkinson, C.
McBeath, D. Jonas-Dwyer & R. Phillips (Eds), Beyond the comfort zone: Proceedings of the 21st
ASCILITE Conference (pp. 811-820). Perth, 5-8 December.
http://www.ascilite.org.au/conferences/perth04/procs/roy.html

Copyright © 2004 Geoffrey G. Roy & Jocelyn Armarego

The authors assign to ASCILITE and educational non-profit institutions a non-exclusive licence to use this document
for personal use and in courses of instruction provided that the article is used in full and this copyright statement is
reproduced. The authors also grant a non-exclusive licence to ASCILITE to publish this document on the ASCILITE
web site (including any mirror or archival sites that may be developed) and in printed form within the ASCILITE
2004 Conference Proceedings. Any other usage is prohibited without the express permission of the authors.

