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This paper introduces the use of exploratory sequential data analysis (ESDA) to detect, quantify 
and correlate patterns within audit trail data. We describe four sequence analysis techniques and 
use them to analyse data from 34 students' attempts at an interactive drag and drop task. Using a 
model sequence of events based on the task's underlying educational design as reference, we 
employed these techniques to: (i) calculate an 'average' sequence of events based on individual 
user sequences, (ii) characterise individual sequences in terms of their similarity to the design 
model, (iii) identify common partial sequences within individual sequences, and (iv) 
characterise transitions between two disparate actions within the task. We then used the results 
of these analyses to explore why most students failed to complete all components of the task. 
We suggest that it was not because the task was too long or that it lacked challenge but that 
students intentionally and selectively ignored certain non-key steps in the task. It is our 
contention that ESDA techniques, in conjunction with judiciously collected audit trail data, 
represent a powerful and compelling tool for educational designers and researchers. 
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Introduction 
 
The utility of audit trail analysis continues to attract scepticism, much of it directed towards issues 
associated with data management and analysis and interpretation (Reeves & Hedberg 2003). With respect 
to data management, audit trail systems can undoubtedly capture huge amounts of data, the bulk of which 
may be irrelevant to the investigation at hand. However, given our ability to capture, store and manage 
and retrieve increasingly large amounts of data using software agents, network protocols and scalable 
databases, physically managing the sheer volume of data generated is not the problem it once was. In 
addition, not all data capture systems are as verbose and produce data as abstract as server logs or 
keystroke capture agents but can instead be tailored to collect only those events and information 
requested by the investigator. With such targeted systems the volume of data captured is substantially 
reduced and internal re-coding of the captured data can greatly improve its accessibility (Judd & Kennedy 
2001). In essence, data management is no different than any other system design issue. Sound design 
leads to the development of robust systems and good data management practices. 
 
With respect to the analysis and interpretation of audit trail data, Reeves and Hedberg (2003) state that 
 

The analysis of audit trail data within complex multimedia or hypermedia programs is especially 
challenging. When learners can go wherever they want in any sequence, the possibility of 
detecting interpretable paths without the input of learners becomes almost impossible (p. 182). 

 

While acknowledging that audit trail analysis is often complex, and sometimes challenging, discerning 
meaning is by no means impossible. Audit trail data, like many other types of data based on behavioural 
observations are open to analysis through a wide range of statistical and numerical techniques. Although 
undoubtedly helpful, the use of external measures to supplement or inform audit trail analysis is by no 
means mandatory and meaningful patterns of usage can be derived in their absence, particularly where the 
sample population is large. Moreover, a sound understanding of how users interact with a given 
multimedia or hypermedia environment is essential before we can begin to consider why they interact 
with it in various ways. By way of example, in a recent paper (Kennedy & Judd, 2004) we described an 
audit trail analysis of students' usage of a multimedia program designed to assist medical students develop 
sound interviewing techniques. Students use the program to construct a virtual interview between a doctor 
and a patient, represented to the user as a series of audio and video clips and internally (within the 
program's logic) as a decision tree. The audit trail data captured included a sequential record of which 
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'nodes' in the decision tree the user visited and the various actions they engaged in at each of these nodes. 
Simple descriptive statistics of counts and times provided valuable insights into how students were 
accessing the program and utilising its principal features. A numerical clustering technique was then 
employed to resolve differences between students' use of a key subset of these features. We subsequently 
identified four distinct categories of users that encapsulated different practical (and by inference 
conceptual) approaches to using the program. These various approaches were manifest as distinct 
navigational paths within (but not necessarily between) the various nodes of the decision tree. The 
robustness of these categories has subsequently been confirmed by independent analysis of additional 
audit trail data collected from the program over three successive years (Kennedy & Judd, unpublished 
data). We were able to detect these differing navigational paths using simple counts of user actions as 
input because of several key aspects of the program's underlying learning design. These include the fact 
that users visit many nodes during the course of an interview, that there are a limited number of actions 
available to users at each node and that the order in which these actions can be performed is fixed. 
However, analysing simple counts of user actions cannot assist us to recognise patterns within the 
sequences of nodes visited by individuals or groups of users or, in a wider context, to recognise and 
interpret navigational paths within more complex or less structured multimedia or hypermedia 
environments or tasks. In such cases, we need to employ specialised techniques to detect, compare and 
contrast sequences of user actions, events or paths we may have captured using audit trails. 
 
Sequence analysis remains a largely untapped field of investigation by multimedia and hypermedia 
researchers. However, the rise of genetic analysis, in particular, has led to the development and adoption 
of powerful techniques (Kruskal 1983, Lange 2002) for analysing sequential data, some of which have 
filtered through into the domain of human computer interaction (HCI). Of particular relevance to us is the 
application of various sequence analysis techniques, often referred to as exploratory sequential data 
analysis or ESDA, within the field of usability testing (Sanderson and Fisher 1994, Hilbert and Redmiles 
2000). Hilbert and Redmiles (2000) identify three main categories of ESDA techniques: (i) sequence 
detection – techniques for detecting occurrences of defined target sequences within source sequences, (ii) 
sequence comparison – techniques for measuring correspondence between source and target sequences, 
and (iii) sequence characterisation – techniques for constructing abstract models from source sequences. 
Techniques drawn from each of these categories are potentially useful to researchers working with audit 
trails captured from multimedia and hypermedia environments. They might, for example, be employed to 
characterise the order in which users visit the various sections of a modular tutorial and to then compare 
these with model paths based on simple presentation order, embedded user support or more abstract paths 
based on combinations of linked concepts. Alternatively, researchers may wish to focus their attention at 
a finer scale of actions such as the order in which users complete a drag and drop task or select options in 
a multiple choice question. 
 
The purpose of this paper is threefold. The first is to briefly introduce a number of relatively simple 
ESDA techniques that we have either adapted or developed specifically for use with audit trail data. The 
second is to demonstrate the utility of these techniques by applying them to the analysis of actual audit 
trail data collected during students' attempts at a relatively complex interactive task. Finally, in a previous 
study (Kennedy & Judd 2000), we reported various analyses of this task based primarily on simple usage 
statistics. However, our interpretation of these results, particularly with a view to reconciling user actions 
and designer expectations, was limited by our inability to analyse key sequential components of the user 
data. This paper attempts to redress that limitation. 
 
Methods 
 
The software environment 
 

For the current study, we collected audit trail data from a multimedia program used by Medical students 
at the University of Melbourne. Medical Genetix (Metcalfe 2003) is a CD ROM based program dealing 
with biomedical and clinical aspects of various genetic disorders and is used as a non-compulsory, self 
directed learning resource within a problem based medical curriculum. Students have ready access to this 
resource through their faculty's main computer laboratory and tutorial rooms. 
 
Medical Genetix includes of a number of modules and sections that users can freely navigate between via 
a series of interface tabs. We were especially interested in students' use of a single section of the program 
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(Family Histories and Pedigrees) within a single module (Cystic Fibrosis) in conjunction with its 
recommendation as a learning resource for a 'problem of the week' dealing with cystic fibrosis. This 
section includes a 'drag and drop' task requiring users to complete a genetic pedigree, based on a supplied 
family history, by dragging tiles that reflect family members' sex and genetic status to 20 empty positions 
in the pedigree. Incorrect drags are immediately rejected. We created a modified version of Medical 
Genetix that included the audit trail system and configured the system to collect detailed data relating to 
students' usage of the Cystic Fibrosis module in general and the pedigree task in particular. This version 
was installed in Medical Faculty's main computer lab, and data was collected over a one week period 
during 2000, coinciding with its recommendation as a learning resource. 
 
In an earlier paper (Kennedy & Judd 2000) we revealed that a total of 78 students accessed the program, 
49 entered the Family History and Pedigree section of the Cystic Fibrosis and of those 34 attempted the 
pedigree task. Of these 34 students, all placed a minimum of 10 tiles and correctly placed 15.6 tiles on 
average. Interestingly, only one student successfully placed all 20 tiles (Judd & Kennedy, 2000). 
Moreover, our analysis of users' final three tile placements revealed that students were not abandoning the 
task due to lack of success or frustration – 97% of users correctly placed their final tile and 77% correctly 
placed their final three tiles. These results led us to suggest that either the task was either too long or 
insufficiently challenging to maintain students' interest to completion (Kennedy & Judd 2000). 
 
For the current study, we undertook an analysis of the sequence in which students correctly placed the 
various tiles when completing the pedigree. In doing so, we were particularly interested in assessing how 
closely students adhered to the presented history. More specifically, was a student's degree of adherence 
to the presented history related to any failure to complete the task and if so, how? Were students tackling 
the task in the same (or similar) ways, or were they adopting different strategies?  
 
The audit trail system 
 

The macro design of the system we used to collect the audit trail data is described in detail in Judd and 
Kennedy (2001). Briefly, it is an embedded system that is installed and configured during the target 
software's development. For our purposes, the advantages of this approach – targeted data collection and 
integrated data management – strongly outweigh the perceived benefits (chiefly portability) of software 
agents that rely on keystroke capture. The system employs both sequential and object based data capture 
and management, allowing targeted events to be logged to a simple sequential record and/or used to 
update user defined data objects each with its own set of properties and methods (e.g. timers, counters, 
strings, histories etc). Data logged by the system is converted to XML format and either stored locally on 
the user's computer for later retrieval or emailed to the developer/researcher. A dedicated parsing 
application is then used to process the retrieved XML files and prepare the data for further analysis. 
 
Sequence analysis techniques 
 

We have recently developed or adapted a series of analytical techniques for detecting, characterising and 
analysing sequences in audit trail data. Four of these techniques have been employed in the current study 
and are described below (detail of descriptions is limited by size constraints). 
 
Model development (technique A) 
Technique A employs a number of sequence detection and characterisation routines loosely based on 
Fisher's cycles (Hilbert & Redmiles 2000) to derive an objective model sequence of prescribed events 
from a number of source sequences. Briefly, it takes a sequential list of events (items), such as the names 
of visited screens, for any number of users and through a repeated series of transformations, calculates a 
ranking for each item, where rank indicates the position of the item in the model sequence. Identical 
rankings are resolved through a series of pair wise comparisons of the equivalent items using the 
percentage of occurrences of one of the items either before or after the other as input (higher percentage = 
higher ranking). The resultant objectively derived sequence represents an 'average' sequence of events for 
all users. While taking repeat instances of events into account in the calculation of ranks, these are not 
represented in the final model. Models derived via this technique can serve as a basis for comparison with 
actual sequences or model sequences derived by alternative means (e.g. presentation order, design 
rationale). 
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Sequence comparison (technique B) 
Technique B employs sequence comparison routines in which source and target sequences are reconciled 
via three types of string transformations (deletion, insertion and translation) and is based on a technique 
termed 'process validation' developed by Cook and Wolf (1997). It takes as input one or more actual 
sequences of events (source sequence) and a corresponding model sequence of events (target sequence) 
derived through technique A or some other means. Deletions are used to remove unwanted multiple 
instances of events from source sequences while insertions replace missing events that are present in the 
target sequence. A series of translations are then applied to convert the modified source sequence to the 
target sequence. Each transformation is optimised so as to require the minimum number of operations. 
For example a missing block of four adjacent items is treated as a single insertion. Source sequences can 
then be compared to a target sequence based either on their values for individual transformation types or 
custom metrics combining the values of two or more transformation types (e.g. distance = a x insertions + 
b x translations). 
 
Sequence detection (technique C) 
Technique C takes as input a series of source sequences and a specified sequence length. Each source 
sequence is processed iteratively to extract all (consecutive) sequences of the specified length. For 
example, the simple sequence ABCDE would yield four sequences of length 2 (AB, BC, CD, DE) three 
sequences of length 3 (ABC, BCD, CDE), two sequences of length 4 (ABCD, BCDE) and a single 
sequence of length 5 (ABCDE). As each source sequence is processed, any unique sequence is added to a 
list of target sequences. At the end of this process, all target sequences are matched against all source 
sequences to determine their frequency of occurrence across the entire sample. Sequence 'chunks' 
identified in this way can be matched against model sequences created via technique A or some other 
method or can be used as 'building blocks' in the generation of new models. 
 
State transitions (technique D) 
Technique D employs a sequence characterisation approach based on Guzdial's (1993) adaptation of 
Markov chain analysis. Its purpose is to derive process models that describe the probabilities of 
transitions between events (states). Unlike the previous techniques, which can accommodate large 
numbers of unique events, this technique is best limited to a few key events. This limitation is practical 
rather than technical as although state transition data can be simultaneously calculated for many events, 
the presentation and interpretation of this data relies on graphical representations that become 
increasingly difficult to render as the number of states increases. To work within this limitation it is 
generally best to either chunk related events prior to analysis or restrict the analysis to a smaller number 
of higher level events (e.g. investigate user movements/transitions between major sections of a program 
rather than between screens across multiple sections). The resulting state diagrams efficiently summarise 
the probability that a user will move from an event to any other event, including reselection of the 
originating event. 
 
Data analysis 
 
Model development 
For the first part of this analysis, a model sequence of tile placements in the interactive pedigree task of 
Medical Genetix was created based on the simple order of mention of named characters in the provided 
family history (see Appendix for a full transcript of the history). This model (I) accurately reflects the 
task's underlying educational design – the order in which student could reasonably be expected to 
complete the task. A second model (II) representing the 'average' sequence of tile placements was then 
calculated from the students' actual sequences using technique A. The two models are presented in Table 
1. There was a high level of association between the two models. Reconciling the two models via 
technique B required only two single item translations, corresponding with the differential rankings of 
Mark (19th vs. 5th) and Tanya (13th vs. 16th) (Table 1). 
 
Sequence comparison 
All 34 user sequences were also reconciled with the model I sequence using technique B. With a single 
exception (the lone student who correctly placed all 20 tiles) all of these transformations required a 
combination of insertions and translations, the results of which are presented as a combined density plot 
in Figure 1. Although the technique is able to accommodate deletions, none were required as individual 
tiles can only be placed once in the pedigree. 
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Table 1: Model sequences of tile placements 
Models are based on (I) order of mention in the family 
history and (II) actual user sequence using technique A. 

 

Model Model Order 
I II 

Order 
I II 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Mathew 
Paula 
Julia 

Damian 
Margaret 

Mark 
Peter 
Susan 
Joseph 
Sally 

Christine 
Andrew 

Anne 
Colin 

Debbie 
Tanya 

Mitchell 
Melanie 

Alan 
Fiona 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Mathew 
Paula 
Julia 

Damian 
Margaret 

Peter 
Susan 
Joseph 
Sally 

Christine 

Andrew 
Anne 
Tanya 
Colin 

Debbie 
Mitchell 
Melanie 

Alan 
Mark 
Fiona 

 
The majority of user sequences required at least four insertions (mean = 3.9, median = 4) and three 
translations (mean = 3.1, median = 3) to be reconciled with model I. Given that the average user 
successfully completed 15.6 tile placements (Kennedy & Judd 2000), these data confirm that most 
insertions (i.e. omissions by the student) involved individual tiles (corresponding to a single mention of a 
name in the history) and not groups of tiles (corresponding to a phrase, sentence or paragraph in the 
history) as the latter would be treated as single insertions. The interpretation of the translation data is 
more complex and is addressed in part in the following section. 
 

 

 
 
 
Figure 1: Sequence transformations 
 
Values represent the frequencies of 
insertions and translations required to 
derive model sequence I from the 34 
source sequences. Area of circles is 
proportional to the number of source 
sequences. 

 
Sequence detection 
Technique C was used to create partial sequences of between two and ten items in length using the 34 
user sequences as input. Partial sequences of nine items or greater in length were not considered further as 
none were common to two or more user sequences. Large numbers of distinct partial sequences were 
generated from the user sequences despite the high level of agreement between the 'average' user 
sequence (model II) and the model I sequence (Table 2). For example, if all user sequences conformed 
completely to a specific model (e.g. model I), we would detect only 19 partial sequences given that the 
maximum user sequence is 20 – similarly we would detect 18 partial sequences of length three, 17 of 
length four and so on. However, 135 distinct partial sequences of length two out of a theoretical 
maximum of 380 (randomly generated) partial sequences were detected, with over half of these occurring 
in two or more of the user sequences. The high number of partial sequences of length two strongly 
influenced the number of partial sequences of all other lengths that were detected, with totals ranging up 
to 345 for sequences of length five (Table 2). 
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Table 2: Statistics for partial sequences derived via technique C 
Total = the number of discrete partial sequences recognised across all user sequences. Common = the 

number of identified partial sequences occurring in two or more user sequences. Maximum frequency = 
number of instances of the most common partial sequence across all user sequences. 

 

Sequence length Total Common Maximum frequency 

2 135 72 21 
3 255 85 12 
4 328 50 6 
5 345 31 6 
6 340 16 3 
7 317 8 2 
8 290 1 2 

 
Table 3: Grouping of names within model I sequence based on sentence structure 

Names in italics are duplicate mentions. Square brackets contain the character's genetic status (xx = 
affected, xo = carrier, oo = unaffected, - = unknown status) according to the history and the percentage of 

students who placed the corresponding tile in the pedigree 
 

Paragraph Names 

1 Mathew[xx, 73.5] 

2 Paula[oo, 88.2] Julia[xx, 76.5] 

3 a Damian[--, 91.2] Margaret[--, 76.5] 
 b Damian, Mark[--, 67.6] Peter[xo, 73.5] 

4 a Peter, Susan[xo, 85.3] 
 b Peter Joseph[oo, 73.5] Sally[oo, 79.4] 

5 a Peter, Sally 

 b Christine[oo, 79.4] Andrew[oo, 82.4] 

6 Margaret Anne[oo, 61.8] Colin[--. 73.5] 

7 a Colin Debbie[--, 73.5] 
 b Tanya[xx, 64.7] Mitchell[oo, 79.4] Melanie[xo, 76.5] 

8 Margaret Alan[xo, 79.4] Fiona[--, 67.6] 

 
Several of the most common partial sequences of various lengths were then matched against model I. To 
aid in this comparison, model I was segmented on the basis of the underlying sentence structure of the 
family history (Table 3), with names grouped according to which paragraph, sentence or phrase they were 
mentioned in. Of the most commonly occurring partial sequences of length two, all corresponded to joint 
mentions within individual phrases (e.g. Damian and Margaret, Peter and Susan, Alan and Fiona – see 
Appendix). The most common partial sequences of length three followed a similar pattern of distribution 
within the model including examples such as Mathew, Paula and Julia and Sally, Christine and Andrew. 
Of the longer partial sequences, the most common were those occurring within and across the first four 
paragraphs although these did not necessarily follow model I exactly, with variations including simple 
deletions such as the omission of Mark (paragraph 3b) and translations such as the order reversal of Paula 
and Julia (paragraph 2a) (Table 3). 
 
State transitions 
Technique D was employed to investigate transitions by users between the history and the drag and drop 
task. The number of instances that users either (a) followed a drag with another drag, (b) followed a drag 
with a visit to the history, (c) followed a visit to the history with a drag, or (d) followed a visit to the 
history with another visit to the history, were recorded for all individuals. These values were then used to 
calculate average probabilities for each of the four possible transitions (Figure 2). Table 4 provides some 
supporting statistics. We also investigated whether these transitions were influenced by the success or 
failure of any given drag (unsuccessful drags accounted for 20% of all attempts). Interestingly, users were 
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less likely to visit the history following an unsuccessful than a successful drag (p = 0.53 vs. p = 0.32; see 
Figure 2b and 2c). A possible explanation of this behaviour is that users typically attempt to replace a tile, 
utilising retained knowledge, following an incorrect drag but seek additional information from the history 
before attempting to place the next tile in the sequence. 
 

 
Figure 2: State transition diagram 

Options represent the probability that for any action a user will either change actions (from drag to history or 
vice versa) or reselect the same action for any drag (a), following a successful drag (b) and following an 

unsuccessful drag (c). NB. History to history and history to drag probabilities are identical for (a), (b) and (c). 
 

Table 4: Descriptive statistics for drags and history visits 
Consecutive drags and history visits values represent the average number of consecutive drags or 

history visits (i.e. sequence length) across all users, not their incidence. 
 

Variable mean stdev 

unsuccessful drags 4.0 2.7 
successful drags 15.6 2.0 
total drags 19.6 3.4 
unsuccessful/total drags 0.20 - 
consecutive drags 2.2 - 

history visits 17.9 6.2 
consecutive history visits 1.6 - 

drags per history visit 1.3 - 

 
Discussion 
 
We have introduced four ESDA techniques as suitable tools in the analysis of sequential audit trail data 
captured from multimedia or hypermedia environments. All are simple to apply provided the source data 
is in an appropriate format and we have provided examples of how the results of each can be presented 
and analysed further to facilitate interpretation. Our results also demonstrate the advantages of employing 
a combination of techniques within the same dataset. For example, our application of technique A (model 
development) led to the development of a model that was almost identical to one based on order of 
mention (Table 1), which viewed in isolation might suggest that individual users complete the task to a 
similar degree and in similar ways. However, non-sequential analysis of the data revealed considerable 
variation in both degree and success of completion of the task (Table 4, Kennedy and Judd 2000) while 
sequence analysis demonstrated a substantial level of deviation of individual sequences from the order of 
mention model (Tables 2 and 3; Figure 1). 
 
In a previous paper (Judd and Kennedy 2000) we suggested that students typically failed to complete the 
pedigree task because it was either too long or insufficiently challenging. However, this conclusion – 
which was based only on counts of correct and incorrect tile placements – is not supported by our analysis 
of the sequence in which individual students placed tiles within the task. If the task was too long and 
students were failing to complete it as a result, we would have expected them not to have placed one to 
several of the last mentioned characters in the family history. This was not the case. At least half of the 
students completed at 16 or more (out of a possible 20) successful drags and the tiles they omitted from 
the pedigree were drawn from all parts of the history – even the first mentioned name was omitted by 
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more than 25% of students (Table 3). Of the four most frequently omitted tiles (indicated by asterisks in 
Figure 3), only the last mentioned character in the history (Fiona = 20) was linked to any subordinate 
branches in the pedigree and, even then, the tiles of each of the children of this character could have been 
correctly placed without reference to Fiona's genetic status. Furthermore, a character's declared genetic 
status appeared to be unrelated to whether that person’s tile was or wasn't placed. Of the four most 
frequently omitted tiles, two had undeclared status, one was unaffected and one was affected (see Table 
3). All of which suggests that it was a character's/tile's spatial and/or conceptual relationship to other 
characters in the history rather than their order of mention that was critical in determining whether they 
were successfully placed in the pedigree. 
 
It is more difficult to ascertain with certainty whether the task lacked challenge. However, completing the 
task should have been a relatively straightforward process for any student with a basic understanding of 
the inheritance of recessive traits and the use of pedigrees (readers can judge the difficulty of the task for 
themselves by referring to Figure 3 and the appendix). Most students attempted the task with few errors 
(Table 4) and at least some of those can be accounted for in either ambiguities in the history or 
unfamiliarity with task protocols (eldest sibling at left; males at left in isolated couples – see Figure 3). As 
is the case if the task was too long, we might have expected to see students leaving the task sooner, if they 
lacked the motivation to complete it because it was too easy. 
 

 
 

Figure 3: Completed pedigree task 
Superimposed numbers represent tile placement order based on their order of mention in the family history (see 

Appendix). Asterisks indicate tiles with the lowest rate of placement (< 70%) across all users. 
 
Why then did students fail to complete the task if, as we assumed, it was neither too long nor 
insufficiently challenging? A possible explanation is that students consciously chose to not to place 
certain characters in the pedigree as they worked their way through the history. As we describe above, the 
most frequently omitted characters tended to be either spatially or conceptually less important in the 
overall context of the task. That is, although students ‘ignored’ certain characters (by failing to place them 
in the pedigree) at a behavioural level, they may well have understood their status and relationship to 
other characters sufficiently to have, in a sense, ‘placed’ them at a cognitive level. 
 
In conclusion, we believe that ESDA is a powerful and robust approach when judiciously applied to audit 
trail data. It promises the ability to investigate students’ behavioural learning processes in great and 
varied detail for many types of interactive tasks. Such tasks are not limited to traditional multimedia 
applications and could be extended to the analysis of users’ interactions in real time chat environments or 
discussion forums. We believe ESDA techniques will also prove to be of considerable use to educational 
designers seeking to verify whether interactive tasks are being used in accordance with their expectations. 
Good quality information of this sort is essential for informing both the effective design of new tasks and 
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the redesign of existing but ineffective tasks. The types of analysis we describe could also be used to 
provide real time interventions to users as they navigate tasks within educational technology 
environments. ESDA techniques open new avenues for exploring otherwise difficult to analyse data. 
They represent a valuable tool for those seeking to refine current ideas and generate new hypotheses in 
relation to user behaviour in multimedia and hypermedia environments. 
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Appendix: Family history from the Medical Genetix pedigree task 
 
• Mathew A, the proband, is a 10-year-old boy diagnosed with cystic fibrosis (CF). 
• He has two sisters, Paula (8) who is unaffected and Julia (7) who is also affected. 
• His parents are Damian and Margaret. Damian has a fraternal twin Mark and an older brother Peter. 
• Through cascading testing, Peter and his mother Susan were found to be carriers of CF, whereas his 

father Joseph and Peter's wife Sally were not carriers. 
• Neither of Peter or Sally's two children, Christine or Andrew were found to be carriers. 
• Margaret has a younger sister Anne, who is unaffected, and a younger brother Colin. 
• Colin and this wife Debbie have three children: the middle child Tanya is affected with CF, Mitchell 

is unaffected and the eldest child Melanie was later found to be a carrier. 
• Margaret's parents are Alan and Fiona and through cascade testing Alan was found to be a carrier. 
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