
230

Beyond learning objects: Towards learning beans

Fintan Culwin
London South Bank University

Learning objects, in common with other instructional media, are relatively expensive to
produce; yet seem to have limited suitability for reuse in different situations. The 'object' aspect
of learning objects is borrowed from the domain of object oriented programming. Within this
domain there are concepts that extend the notion and utility of object. One of these is the
concept of a bean, a bean is a packaged object that is able to semi-automatically install itself
into different scenarios. This paper attempts, using an example from the author's own domain,
to enumerate a set of design principles that will enhance the possibility of successful reuse of
objects. In doing this the learning object will have taken on some bean characteristics and so
have started to become a learning bean.

Keywords: Learning object, learning bean, software engineering education, computing
education

Introduction

Learning Objects have a degree of comfort associated with them, if only because definitions that include
phrases such as “any entity digital or nondigital” (IEEE 2004) logically subsume anything and everything
(Wiley 2001). Beyond this there are a plethora of other definitions which differ in scope from those that
specify a particular technology (EOE 1998) those that specify a particular instructional sequence (L'Allier
1997) or even a particular mode of interaction (Laleuf & Spalter 2001). Others have attempted to refine
the concept of learning object by reclassifying some as instructional objects (Gibbons & Nelson 2002),
information objects or content objects (Johnson 2003) and then, in some cases, defining a learning object
as an aggregation of such refinements. Thus although there is some degree of comfort associated with the
familiarity of the term, upon closer inspection the term has become subject to so many differing
interpretations so as to become almost meaningless.

Given the inherent confusion in the meaning of the term learning object it is incumbent upon authors to
operationally define the meaning of the term in the context of the ideas that they are presenting. For this
paper a learning object is taken to be a meaningfully interactive digital resource that can be web hosted.
The qualification of meaningful on interactively is to deny the term to e-book style resources where
interactivity is limited to pressing a button to access the next page and/or to start an animation. From the
perspective of this paper, such resources do not take best advantage of the capabilities afforded by
modern computing and communication capabilities.

One fundamental concept borrowed from the domain of software development, particularly Object
Oriented Software Development (OOSD), is that of reusability and interoperability. This conception
proposes, in both software and instructional design, that objects can be combined as easily as Lego bricks
to produce complex artefacts quickly and economically. This has not proved to be as possible in OOSD as
was once thought (Gabriel 2002) nor in instructional design (Friesen 2004). Some authors have borrowed
other ideas, such as coupling and coherence, from the general domain of software engineering (Boyle
2003).

Within OOSD the notion of object has been further refined in order to attempt to deliver more of the
promises that were once made. One such refinement is that of a bean (specifically a Java bean) where the
ability of objects to be reused is enhanced by ensuring they can be located in different situations. This
capability is delivered by designing objects according to a defined set of protocols that allow it to be
customised in situ; that is whilst it is within the environment where it is to be deployed.

In this paper an attempt is made to start to enumerate the characteristics of situatability as they might
apply to highly interactive learning objects. This is accomplished by taking a moderately complex
learning object from the author's domain of initial software development education and illustrating how it

Culwin

231

can be customised in situ to accommodate different learning scenarios. Unfortunately this does mean that
the start of this paper will have to explain in some detail a concept taken from initial programming
instruction. Fortunately there is a learning object available to assist with assimilating this knowledge
(Culwin 2004) which also provides a proof of concept of the ideas presented in this paper.

Once this barrier has been crossed a selection of customisations and enhancements to the basic object will
be presented illustrating different scenarios of possible usage. This, together with some other ideas taken
from the broad domain of software engineering practise, will lead to a list of design principles that might
enhance the deployability and reusabilityof learning objects in general; leading towards the initially
unfamiliar and so possibly uncomfortable concept of a learning bean.

A diversion into ‘for loops’

Readers who are familiar with a C style programming language for loop will not need to read this section.
Those who do not have such familiarity may discover exactly why programming tutors are so concerned
to develop and deploy effective learning objects. Those who are especially lucky may be reading this
paper online with the learning objects being described embedded within the text, in order to assist with
the comprehension of loop construction and operation.

In the initial stages of learning how to program there is a need to learn a control construct that will cause
a sequence of actions to be repeated a known number of times. One such construct is known as a for loop
and in what this paper will denote as its canonical form appears as follows:

for (int index = 0;for (int index = 0;for (int index = 0;for (int index = 0;
 index < 10; index < 10; index < 10; index < 10;
 index++) { index++) { index++) { index++) {
 printf(index printf(index printf(index printf(index + “ “);+ “ “);+ “ “);+ “ “);
} /* end if */} /* end if */} /* end if */} /* end if */

The effect of executing this code fragment would be to display the integers from 0 to 9 (that is “0 1 2 3 4
5 6 7 8 9") in an output window. The phase: int index = 0int index = 0int index = 0int index = 0 on the first line will create an integer
variable called indexindexindexindex and set its value to 0. The next line, index < 10index < 10index < 10index < 10, is a conditional question that can
be read as ‘is the value of index less than 10?’, for which at this stage the answer is yes.

The next line is ignored for the time being and the body of the loop between the {{{{ and }}}} delimiters is
executed. In this canonical form it consists of a single output primitive printfprintfprintfprintf instruction; which displays
the value of indexindexindexindex (0), followed by a space.

At the end of the loop, noted as such by the /* end if *//* end if *//* end if *//* end if */ marker, the third line index++index++index++index++ is executed. The
effect of this line is to add 1 to the value of indexindexindexindex, at this stage taking it from 0 to 1. The condition ‘is the
value of index less than 10?’ is asked again and as the answer is still yes the body is executed for a second
time again; appending ‘1 ‘ to the ‘0 ‘ already there.

Figure 1: For loop flowcharts: canonical (left) and generic (right)

Culwin

232

This pattern of behaviour; incrementing the indexindexindexindex, checking that it is still less than 10 and outputting its
value; continues until the conditional question is no. As soon as this is the case the loop terminates and
the program would continue with other instructions.

The execution of a for loop can be illustrated on a flow of control chart, as shown in Figure 1. The precise
behaviour of a loop can be controlled by varying the initial value of the index; changing the nature of the
condition (‘ is less than’, ‘is less than or equal to’, ‘is greater than’, ‘is greater than or equal to’, ‘is equal
to’ and ‘ is not equal to’) as well as the value it is tested against; and the change that is made to the index
(‘increment by 1’, ‘ decrement by 1’, ‘ increment by n’ and ‘decrement by n’). Figure 2 gives some
examples of variations on the canonical form and the output they would produce.

ffffor (int index = 0;or (int index = 0;or (int index = 0;or (int index = 0;
 index <= 10; index <= 10; index <= 10; index <= 10;
 index+= 2) { index+= 2) { index+= 2) { index+= 2) {
 printf(index + “ “); printf(index + “ “); printf(index + “ “); printf(index + “ “);
} /* end if */} /* end if */} /* end if */} /* end if */

for (int index = 10;for (int index = 10;for (int index = 10;for (int index = 10;
 index > 0; index > 0; index > 0; index > 0;
 index index index index--------) {) {) {) {
 printf(index + “ “); printf(index + “ “); printf(index + “ “); printf(index + “ “);
} /* end if */} /* end if */} /* end if */} /* end if */

for (int index = 5;for (int index = 5;for (int index = 5;for (int index = 5;
 index > index > index > index > ----5;5;5;5;
 index index index index----= 2) {= 2) {= 2) {= 2) {
 printf(index + “ “); printf(index + “ “); printf(index + “ “); printf(index + “ “);
} /* end if */} /* end if */} /* end if */} /* end if */

for (int index = 10;for (int index = 10;for (int index = 10;for (int index = 10;
 index < 35; index < 35; index < 35; index < 35;
 index+= 5) { index+= 5) { index+= 5) { index+= 5) {
 printf(index + “ “); printf(index + “ “); printf(index + “ “); printf(index + “ “);
} /* end if */} /* end if */} /* end if */} /* end if */

0 2 4 6 8 10 10 9 8 7 6 5 4 3 2 1 5 3 1 -1 -3 10 15 20 25 30

Figure 2: Various for loop configurations and their outputs

Practical knowledge of fundamental constructs such as this is essential to successful progression in
learning the skills of software development. The for loop is one of many constructs that has to be rapidly
and completely assimilated in order for higher level skills to be accommodated. Unfortunately, an
increasing proportion of students are either not willing or able to engage effectively with this learning
demand.

The politics of for loops

The C programming language is no longer widely used as an initial teaching language, having been
superseded by languages such as C++ (c plus plus), Java or C# (c sharp). The canonical form of the for
loop in each of these languages is given in Figure 3. Although the differences in the languages may seen
trivial to an outsider, particularly with examples as simple as this, there is as almost Swiftian aspect to the
‘language wars’ that can and do erupt in organisations that are considering a change of language.

C++ Java C#
 for (int index = 0; for (int index = 0; for (int index = 0; for (int index = 0;
 index <= 10; index <= 10; index <= 10; index <= 10;
 index++) { index++) { index++) { index++) {
 cout << index << ' '; cout << index << ' '; cout << index << ' '; cout << index << ' ';
 } // end if } // end if } // end if } // end if

 for (int index = 0; for (int index = 0; for (int index = 0; for (int index = 0;
 index <= 10; index <= 10; index <= 10; index <= 10;
 index++) { index++) { index++) { index++) {
 System.out.println(index + ' '); System.out.println(index + ' '); System.out.println(index + ' '); System.out.println(index + ' ');
 } // end if } // end if } // end if } // end if

 for (int index for (int index for (int index for (int index = 0;= 0;= 0;= 0;
 index <= 10; index <= 10; index <= 10; index <= 10;
 index++) { index++) { index++) { index++) {
 Console.WriteLine(index + ' '); Console.WriteLine(index + ' '); Console.WriteLine(index + ' '); Console.WriteLine(index + ' ');
 } // end if } // end if } // end if } // end if

Figure 3: Canonical for loops in C++, Java and C#

Apparently even more trivial might be the positioning of the curly brace that delimits the start of the body
of the loop. Two conventions are the common use, which are referred to in this paper as K&R and
Modern. The layouts are illustrated in Figure 4 and although they have absolutely no effect upon the
operation of the loop they are zealously enforced by tutors. At a recent computing learning objects
workshop in London one attendee made the very definite statement that they would never use an object
being demonstrated as it used the K&R convention (LMU 2004).

 K&R style Modern Style
 for (int indexfor (int indexfor (int indexfor (int index = 0; = 0; = 0; = 0;

 index < 10; index < 10; index < 10; index < 10;
 index++) index++) index++) index++)
{{{{
 printf(index + “ “); printf(index + “ “); printf(index + “ “); printf(index + “ “);
} /* end if */} /* end if */} /* end if */} /* end if */

 for (int index = 0;for (int index = 0;for (int index = 0;for (int index = 0;
 index < 10; index < 10; index < 10; index < 10;
 index++) { index++) { index++) { index++) {
 printf(index + “ “); printf(index + “ “); printf(index + “ “); printf(index + “ “);
} /* end if */} /* end if */} /* end if */} /* end if */

Figure 4: K&R and modern conventions

Accordingly for a learning object to be successfully redeployed outside the environment it was developed
within it must either fortuitously have the appropriate combination of language and layout, or exist in a
large number of variants, or be configurable in situ.

Culwin

233

A simple configuration of a for loop learning object

Figure 5 illustrates four instances of a for loop learning object, configured to support both Java and C++,
and the K&R and modern layout conventions. The provision of additional languages would be relatively
straightforward. The object is written 100% in Java and so is deployable on all browsers under any
operating system that have Java support enabled.

The configuration of the applet's language and layout options is accomplished by the use of the standard
applet parameter mechanism in the HTML source of the Web page they are mounted upon. The applet
will default to Java with a modern layout convention, but the language could be changed to C++ and,
independently, the layout to K&R, by the inclusion of the following phrases within the applet tag.

<PARAM NAME = "language" VALUE = "cpp" >
<PARAM NAME = "layout" VALUE = "KandR" >

The learning object itself supports the rapid exploration of loop configurations. Conventionally
exploration of a loop would require its source code to be included within a minimal skeleton program
which would then have to be compiled and executed to determine its behaviour; with the edit, compile,
execute cycle having to be repeated to explore the effect of changes.

C++ Modern Java Modern

C++ K&R Java K&R

Figure 5: Simple loop learning object, various configurations and simulated output

The learning object also encourages the safe exploration of pathological configurations. Two pathological
configurations are shown at the bottom of Figure 5, the left hand configuration shows a loop that will not
execute and the right hand one that will not terminate. (The object currently only notes that the loop body
has executed more than 100 times, not that it will never terminate.) The effects of both of these

Culwin

234

pathological configurations can be confusing when met for the first time outside the sandbox provided by
the learning object.

The object is operated as illustrated in Figure 6. The parts of the loop construct that can be varied are the
initial value of the index on line 1, entered using a specialised text field that will only allow integer
values. The relation for the test on line 2, (‘is less than’ <<<< , ‘is less than or equal to’ <=<=<=<=, ‘is greater than’
>>>>, ‘is greater than or equal to’ >=>=>=>=, ‘is equal to’ ======== and ‘is not equal to’ !=!=!=!=), which is selected from a
pull down menu. The value that the relation compares the index to is also on line 2 and is also entered by
a specialised text field. The third line manipulates the index either incrementing it by 1 (index++),
decrementing it by 1 (index--), incrementing by a value other than one (index+=) or decrementing
by a value other than one (index-=). The latter two of these options require the value to be specified
using a third specialised text field which becomes available when one of the operations that requires a
value is selected from the pull down menu (as illustrated in the Java Modern part of Figure 5).

Figure 6: Simple loop learning object in operation

The loop structure is initially presented in its canonical form and the Execute button is enabled whenever
the interface is in a state where the loop could be executed. When pressed the LO transits to the state
shown in the right hand diagram of Figure 6, showing the loop as it would appear in source code, and the
Reset button will return the interface to its initial, canonical, form.

A more complex configuration of a for loop learning object

Figure 7 illustrates the same learning object introduced in the previous section reconfigured into a more
complex scenario. This relocation of the essential interactive object places it within an environment
where the learner can be challenged to configure a for loop so as to output a pattern of numbers produced
by the environment.

Figure 7: The simple object in challenge configuration

The precise environment illustrated is one of a series that could be configured to satisfy various
requirements. For example the suggestion in this illustration is that the user of the object will have access
to a possible solution, via the Show Me button as soon as they have executed the loop for the first time.
While this may be acceptable in some environment there may be tutors who regard this behaviour as

Culwin

235

undesirable or unacceptable and may wish for this facility to be omitted altogether or to only be available
after a number of tries have been made. For tutors who, for whatever reason, do not want to 'give the
answer away', the configuration shown in this illustration would cause them to refuse to use the object.
Consequently in order to assure a greater degree of potential reusability learning objects should be
configurable to the possibly personal pedagogic preferences of tutors.

A categorisation of reusability

Before exploring other principles that might enhance reusability a categorisation of different classes of
reuse will be presented together with indications of how the degree of reuse could be measured. The most
obvious meaning of reusability is deployability, that is the number of places where an object can be
shown to have been accessed from. This will include situations where an object has been replicated as a
local copy, and where access to a remote object is embedded within a local resource. For Web hosted
resources this aspect of deployability can readily be measured, at least on the public Web, by standard
search engines. The number of times an object has been used, as opposed to the number of places where it
might be used from, is a little more difficult to measure. In the situation where the object is not replicated
as a local copy, the server log of the host where the resource is location will indicate the amount of usage.

Within software development the usual meaning of reusability is not the number of instances of the object
that are created and used, but the number of places where instances of the object has been used as a
component part of another, more complex, object. For example the numeric input text field as used in the
simple for loop object above is an example of software object reuse. When the loop learning object was
being designed the existence, capabilities and characteristics of the numeric input text field were known
to the designer and three instances of it were specified. When the object was constructed no development
work was required for these instances beyond incorporating the instances within the user interface and
requesting their contents when required. Even though there are three instances of the numeric component
used in the for loop object and potentially many, many instances of the for loop object deployed, this
would count as only a single reuse. Measurement of this aspect of reuse seems problematic, unless the
object is subject to licensing restrictions. This aspect of learning object reuse will be described as
component reuse.

One aspect of reuse that seems omitted from many discussions of learning object reuse is that of
individual reuse. That is an individual learner making use of an object, or a variant of an object, on a
number of occasions. Measurement of this aspect of reuse would be possible for usage entirely within
managed learning environment but for less structured environments might be possible if the learning
object was not locally hosted, as in the discussion of deployability above, or if deployed instances are
configured so as to report their usage.

An enumeration of reusability enhancements

Having illustrated a moderately complex exploratory learning object from the author's specialised domain
and demonstrated some of the configuration possibilities that might lead to a greater degree of reusability.
An attempt will be made in this part of the paper to start to enumerate a set design principles that might
lead to objects in general having a greater degree of reusability. Many of these principles are inherently
predicated on the first principle that objects should be designed and built for in situ configuration.

There are other learning objects that address the needs of neophyte software developers. The Codewitz
(Codewitz 2004) and London Met. (LMU 2004) projects are producing multimedia animations of
programming concepts while others are producing information objects (Gunawardena
& Adamchik 2003; Ford 2004). Algorithm visualisations have had a long history within computing
education, one favourite topic seems to be sorting techniques with one web site listing over 50 such
animations (Brummund 2001). In general these products are static in the sense that they are
preprogrammed by the developer and not programmable by the learner. In terms of the for loop structures
described earlier in this paper it is as if the only loop that could be explored is the canonical 0 to 9 one.
Although this approach may be of some value the expressive nature of programming would seem to
require such expressability in its learning objects. This would lead to the second principle that objects
which allow a learner to express themselves are more likely to be reused by an individual learner.

Culwin

236

One design possibility that might further facilitate individual reuse might be progressive disclosure. In the
for loop example, the simplest possibility might be a loop that always started at 0 and always incremented
by 1 terminating at some value specified by the learner. More complex possibilities can then be described
by allowing for starting points other than 0, allowing decrementation by 1, other relational tests, etc.; until
the full complexity of the loop as described above becomes available. Hence the third principle is that
objects which support progressive disclosure are more likely to be reused by an individual learner.

This principle makes no mention of how the progressive disclosure is to be managed. An instructivist
tutor may wish to define a strictly delineated path of disclosure whilst a more exploratory tutor may
prefer to make the full complexity available from the outset. This leads to the fourth principle that
objects which are free of pedagogic and other philosophical assumptions are more likely to be reused by
tutors. Examples of other philosophical assumptions would include the choice of programming language
and layout convention from the for loop example. Where such philosophical baggage is unavoidable then
the first principle of configurability should allow the tutor’s preferred philosophy to be expressed.

One other aspect of configurability, emphasised for java beans, is internationalisation; commonly known
as i18n as there are 18 letters between the initial i and terminal n. One aspect of i18n is the ability of a
component to display text in different natural languages, but also extends to other presentational
considerations such as the use of dots and commas to format numbers, date formats etc.. For example the
calendar date known as the twenty fifth of December 2004 is conventionally presented as 25/12/2004 in
the UK, 12/25/2004 in the US and 2004/12/25 in Japan. A bean would be expected to automatically
discover the environment it was deployed in and adapt to local conventions. Accordingly the fifth
principle is that objects which support i18n are more likely to be deployed.

The relocation of the simple object as a component part of the more complex object illustrates a further
principle that smaller objects are more likely to be reused as components than larger ones. Although the
complex object might be contextually reused as a part of on instructional object it is unlikely to be reused
as a component part of an exploratory object. This leads to a well known sixth principle that smaller
objects are more likely to be contextually reused than larger ones.

The complex version of the for loop learning object is able to challenge the learner to configure the
interface so as to produce a particular output. Not only this, but the precise challenge differs every time
the object is reset or revisited. There are several principles here each of which would support individual
reuse, but which interact with each other to further enhance the possibilities.

Challenges are made more effective if the object supports meaningful interaction. Objects that support
interaction in the form of ‘press to continue or start’ do not seem to have this property. Objects that
support interaction such as ‘fill in the blank’ or ‘drag these images into order’ support a greater degree of
interaction. Exploratory simulations, such as the for loop example, support interaction that is yet more
meaningful. This illustrates the seventh principle that objects which support meaningful interaction are
more likely to be engaging and so are more likely to be individually reused.

Where a fill in the blank level challenge is presented it may be a hard coded challenge that will never vary
or vary only within a relatively small predefined set. Challenges that can be produced upon demand and
vary every time they are reset or revisited will be perceived as being more testing and so more effective at
consolidating learning and so more likely to be individually reused. Consequently the eighth principle is
that objects which produce different content and/or challenge every time they are encountered are more
likely to be individually reused

This capability can be enhanced by having an objective marking capability. In the complex for loop
example the output of the challenge and the output produced by the learner’s configuration of the for loop
can be simply compared to decide if the configuration is effective (but not in this version if it is optimal).
This capability provides for a large number of possible configurations of the challenge. Possible patterns
of formative usage that might be supported include ‘three tries and locked’, ‘three tries and revealed’,
‘solve the challenge within n seconds’, ‘solve as many challenges as possible in n seconds’ (possibly
leading to a high score board). Summative usage might include ‘solve this challenge for n marks’ or
‘solve this challenge on the first attempt for n marks, second for fewer marks, etc.’. Accordingly the

Culwin

237

ninth principle is that objects which have an objective marking capability are more likely to be deployed
and individually reused.

The multitude of possibilities presented above will provide a challenge in its own right for the
instructional designer. All configuration options should be supported by the same underlying object, a
lesson learned from version control in standard software engineering practice. The additional costs
involved in supporting one large configurable artefact are generally smaller than the costs involved in
supporting a number of preconfigured distinct artefacts. The configuration of the object is therefore best
effected in situ by some mechanism of communication from the page it is hosted on. For Java applets this
is accomplished by parameters to the applet tag as described above.

A learning object should have a reasonable default behaviour so that it can be used out of the box without
further configuration. It should also be supported by documentation in a standard format so that the
instructional designer does not first have to learn the structure of the documentation before being able to
use the information that it contains. However to be most acceptable it should be accompanied by a
configuration utility that will allow the various options to be chosen and will generate the appropriate
HTML code for inclusion in situ. A mock up of a possible utility for the for loop learning object is
illustrated in Figure 8, and illustrates the tenth principle that objects which have a configuration utility
are more likely to be deployed.

Figure 8: Loop learning object configuration utility

The for loop is not the only loop construct available to a developer. Figure 9 illustrates three other
constructs that would produce the same output as the canonical for loop. There are situations where one
particular construct is preferable, although this is often a political issue. The provision of a loop learning
object that can present more than one construct would be more acceptable to tutors who had political
options regarding the appropriate construct to use, and so enhance deployability. Otherwise the ability to
triangulate knowledge of a for loop by transferring the essential cognitive knowledge to an alternative
loop would enhance the possibility of reuse by an individual learner. The eleventh principle is that
objects which triangulate knowledge are more likely to be deployed and individually reused.

while do while half loops
int index = 0;int index = 0;int index = 0;int index = 0;
while(index < 10) { while(index < 10) { while(index < 10) { while(index < 10) {
 cout << index << ' '; cout << index << ' '; cout << index << ' '; cout << index << ' ';
 index++; index++; index++; index++;
} // end while} // end while} // end while} // end while

 int index = 0; int index = 0; int index = 0; int index = 0;
 do { do { do { do {
 cout << index << ' '; cout << index << ' '; cout << index << ' '; cout << index << ' ';
 index++; index++; index++; index++;
 } while(index < 10) } while(index < 10) } while(index < 10) } while(index < 10)

 int index = 0; int index = 0; int index = 0; int index = 0;
 loop { loop { loop { loop {
 cou cou cou cout << index << ' ';t << index << ' ';t << index << ' ';t << index << ' ';
 exit when (index++ == 10); exit when (index++ == 10); exit when (index++ == 10); exit when (index++ == 10);
 } // end while } // end while } // end while } // end while

Figure 9: Alternative canonical loops (C++ style syntax)

One final consideration taken from the domain of software engineering practice is that of open source.
Non-proprietary software can be released on an open source license (GNU 1991) that allows other
developers to modify and redistribute the artefact on a not for profit basis. The most well known open
source project is probably the Linux operating system which had demonstrated the practical and
economic feasibility of large scale open source projects. The advantage with respect to learning objects
such as this is that developers will be able to further develop it allowing for different possible
configurations and remove any bugs that appear, leading to greater opportunities for deployment. This is
the twelfth principle that objects which are free of licensing restrictions are more likely to be deployed
and more likely to be reused as components. (The source code for the examples used in this paper is
available upon request from the author on an open source license.)

Culwin

238

Linked to the open source principle is the open platform principle. Although the Microsoft operating
system with internet explorer might seem ubiquitous it is not the only platform and there are significant
users of both apple and various Unix environments. Learning objects that are dependant upon proprietary
technology may not always be able to be deployed in all environments. Accordingly the thirteenth
principle is that objects which do not use proprietary environments are more likely to be deployed.

A summary of the design principles

1. Objects should be designed and built for in situ configuration.
2. Objects which allow a learner to express themselves are more likely to be individually reused.
3. Objects which support progressive disclosure are more likely to be individually reused.
4. Objects which are free of pedagogic and other philosophical assumptions are more likely to be

deployed.
5. Objects which support i18n are more likely to be deployed.
6. Smaller objects are more likely to be reused as components than larger ones.
7. Objects which support meaningful interaction are more likely to be individually reused.
8. Objects which produce different content and/or challenge every time they are encountered are more

likely to be individually reused.
9. Objects which have an objective marking capability are more likely to be deployed and individually

reused.
10. Objects which have configuration utilities are more likely to be deployed.
11. Objects which triangulate knowledge are more likely to be deployed and individually reused.
12. Objects which are free of licensing restrictions are more likely to be deployed and more likely to be

reused as components.
13. Objects which do not use proprietary environments are more likely to be deployed.

Conclusion: towards learning beans

This paper has presented a highly configurable exploratory learning object from the author’s domain of
initial software development education. This has then been used to enumerate a set of design principles
that might enhance different aspects of reusability. It may be that not all of the proposed principles are
transferable to objects in other domains. It might also be the case that there are design principles that can
be elucidated from a consideration of objects from other domains that are not applicable to this object but
which are appropriate for inclusion in the list of design principles.

The java bean white paper (EJB 2000) lists a number of defining characteristics of beans. The most
fundamental of which is that beans support properties that determine their in situ appearance and
behaviour. Additional characteristics define a mechanism by which these properties can be discovered
and how the bean is able to communicate with its environment. The viability and utility of producing a
learning object that has properties that determine its appearance, for example the programming language
used, and its behaviour, for example if the show me capability, has been demonstrated in the loop object.
Accordingly it can be thought of as a proof of concept learning bean.

A mechanism for the automated discovery of properties, which would allow a general learning bean to be
manipulated in a tool that would configure and install it, might be feasible if the usefulness of this aspect
of beans was generally accepted. Likewise a pattern of behaviour in communicating with the bean’s
environment would also be possible. Any bean that had the characteristics of being able to produce a
challenge and an objective marking capability could be housed in standard environments which control
the behavioural aspects of the challenge. That is the mechanism for say, three tries and reveal, is
independent of the domain that is being learned and so, given a standard communication protocol, could
be reused.

The essential conclusion of this paper, embodied in the first design principle, is that objects which are
designed and built for in situ configuration are more likely to be reused than those that are monolithic and
non-configurable. Such objects might be better described as learning beans rather than learning objects.

Culwin

239

References

Boyle, T. (2003). Design principles for authoring dynamic, reusable learning objects. Australian Journal of

Educational Technology, 19(1), 46-58. http://www.ascilite.org.au/ajet/ajet19/boyle.html
Brummund, P. (2001). The Complete Collection of Algorithm Animations (CCAA).

http://www.cs.hope.edu/~alganim/ccaa/sorting.html [viewed 19 June 2002, verified 2 Oct 2004].
Codewitz (2004). International Project For Better Programming Skills. http://www.codewitz.net/ [verified 2

Oct 2004]
Culwin, F. (2004). Simple Loop Learning Object. http://myweb.lsbu.ac.uk/~fintan/jcf/jcfw.html [verified 2 Oct

2004]
EOE (1998). Educational Object Economy Info Pages. [viewed 19 June 2002, verified 2 Oct 2004]

http://www.eoe.org/foundation/info.htm
EJB (2000). Enterprise java bean White paper. http://java.sun.com/products/javabeans/docs/spec.html [viewed

19 June 2002, verified 2 Oct 2004].
Ford, L. (2004). A learning object generator for programming. Proc. ITiCSE 2004, Leeds UK 2004.
Friesen, N. (2004). Three objections to learning objects. In McGreal, R. (Ed), Online Education Using

Learning Objects. London: Routledge/Falmer
Gabriel, R. P. (2002). Objects have failed. OOPSLA Debate November 2002. [viewed 19 June 2002, verified 2

Oct 2004] http://www.dreamsongs.com/ObjectsHaveFailedNarrative.html
GNU (1991). GNU General Public License. http://www.gnu.org/licenses/licenses.html#GPL [viewed 19 June

2002, verified 2 Oct 2004].
Gibbons, A. S., Nelson, J. & Richards, R. (2002). The nature and origin of instructional objects. In D. A. Wiley

(Ed), The Instructional Use of Learning Objects. AIT Press 2002 ISBN 0-7842-0892-1.
http://www.reusability.org/read/chapters/gibbons.doc [viewed 19 June 2002, verified 2 Oct 2004]

Gunawardena, A. & Adamchik, V. (2003). A customized learning objects approach to teaching programming.
ACM SIGCSE Bulletin, 35(3). http://www-2.cs.cmu.edu/~adamchik/PLO/ITiCSE-03.pdf [verified 2 Oct
2004]

IEEE (2002). IEEE Standard for Learning Object Metadata. http://ltsc.ieee.org/wg12/par1484-12-1.html
[viewed 19 June 2002, verified 2 Oct 2004]

Laleuf & Spalter (2001). A component repository for learning objects. Proceedings of the first ACM/IEEE-CS
joint conference on Digital libraries. ISBN: 1-58113-345-6

L'Allier, J. J. (1997). Frame of Reference: NETg's Map to Its Products, Their Structures and Core Beliefs.
http://www.netg.com/research/whitepapers/frameref.asp [viewed 19 June 2002, not found 2 Oct 2004]

Johnson, L. F. (2003). Elusive Vision: Challenges Impeding the Learning Object Economy.
http://download.macromedia.com/pub/solutions/downloads/elearning/elusive_vision.pdf [viewed 19 June
2002, verified 2 Oct 2004]

LMU (2004). Learning Objects for Introductory Programming. London Metropolitan University.
http://www.londonmet.ac.uk/ltri/learningobjects/examples.htm [viewed 19 June 2002]

LMU (2004). Learning Objects for Computing: Present achievements future prospects. London Metropolitan
University. http://www.ics.ltsn.ac.uk/pub/lo/index.html [viewed 19 June 2002].

Wiley, D. A. (2002). Connecting learning objects to instructional design theory: A definition, a metaphor, and a
taxonomy. In D. A. Wiley (Ed), The Instructional Use of Learning Objects. AIT Press 2002 ISBN 0-7842-
0892-1. http://www.reusability.org/read/chapters/wiley.doc [viewed 19 June 2002, verified 2 Oct 2004]

Fintan Culwin, fintan@lsbu.ac.uk, Faculty of Business, Computing and Information Management,
London South Bank University, Borough Road, London SE1 0AA, UK

Please cite as: Culwin, F. (2004). Beyond learning objects: Towards learning beans. In R. Atkinson, C.
McBeath, D. Jonas-Dwyer & R. Phillips (Eds), Beyond the comfort zone: Proceedings of the 21st
ASCILITE Conference (pp. 230-239). Perth, 5-8 December.
http://www.ascilite.org.au/conferences/perth04/procs/culwin.html

Copyright © 2004 Fintan Culwin

The author assigns to ASCILITE and educational non-profit institutions a non-exclusive licence to use this document
for personal use and in courses of instruction provided that the article is used in full and this copyright statement is
reproduced. The author also grants a non-exclusive licence to ASCILITE to publish this document on the ASCILITE
web site (including any mirror or archival sites that may be developed) and in printed form within the ASCILITE
2004 Conference Proceedings. Any other usage is prohibited without the express permission of the author.

