
The Development Process for
Courseware Material:

A Computing Methodology Approach

Andrew Hunter and Ainslie Ellis
School of Network Computing

Monash University, AUSTRALIA
Andrew.Hunter@infotech.monash.edu.au

Ainslie.Ellis@infotech.monash.edu.au

Abstract
At a university level, the conceptual stage of computer-
facilitated learning (CFL) tends to be a faculty wide forum
with ideas and inputs coming from many sources (e.g.
academics, support staff, students). At the department level
however, it is often a single academic who develops these
ideas and attempts to satisfy the requirements. These
requirements necessitate a full pedagogic understanding.
Whilst it is suggested that it is the norm to utilise teams to
develop programs and on line subjects, experience in the
computing faculty shows that individuals often take, or are
given responsibility for the development of their own subjects.
It has been observed that computing faculty staff are very
familiar with the technology and tend to adopt computing
methodologies to develop these programs with pedagogical
theory being added to the program as "user requirements".
This paper investigates various methodologies currently
employed for computing and some of their associated
restrictions and how they differ with similar educational
methodologies. It investigates ways in which a methodology
could allow developers without a vast educational background
to create pedagogically sound programs.

Keywords
Development, Software design, Computing, Education,

Methodology, Team approach

mailto:Andrew.Hunter@infotech.monash.edu.au
mailto:Ainslie.Ellis@infotech.monash.edu.au


Methodologies

A methodology is a set of methods that define the process and order of
how something is to be achieved. Reeves (1992) believes there has been a
paradigm shift from instructionist to constructivist and that this has, in
turn, reflected a change in methodologies from breaking down the project
into single step tasks to a more holistic approach. In computing, differing
methodologies focus on different perspectives. These include:
• Data-oriented techniques that focus on the organisation’s data and

views the data independently of how it is to be used.
• Process-oriented techniques that are based on the “Input – Process –

Output (IPO) concept. These techniques build models of systems
based on studying the processes of a business.

• Object-oriented and component-oriented techniques.
• Other construction techniques that incorporate design patterns.

When trying to design educational programs using a traditional linear
computing methodology such as the waterfall model the design process
may become unclear. When designing programs for education a less
sequential methodology allowing for more feedback at all stages of the
project is needed. The preferred method for education is the prototype, or
a hybrid mix of prototype and an iterative process.

What are the Various Computing Methodologies?

The Classic Waterfall Model

One of the first and well known methodologies is James Martin's
(Beynon-Davies 1993) Waterfall model. It is usually seen as a natural
progression of steps as shown in Figure 1. The Waterfall model attempts
to separate the life cycle into discrete activities by creating a linear series
of actions. One misconception is that the model always moves in a single
direction. The modeling process does in fact tend to be iterative, looping
back and forward between  steps.

Plan
Analysis

Design
Construction

Implementation

Maintenance



Figure 1: The Classic Waterfall Model

Pfleeger (1991) extended the Waterfall model by placing a larger
emphasis on the testing component. In this model all steps are
interconnected to allow a prototyping approach to be used in conjunction
with the model. Unfortunately neither of these models address Human-
Computer Interaction (HCI) issues.

Prototyping

The current literature on prototyping methods shows a disjoint between
the way the methodology is currently employed across differing
disciplines. This has led to confusion when trying to combine computing
and educational facets into a single set of methods. Prototyping allows a
sense of ownership for the end users but creates further problems of
project creep. Often small changes with each iteration leads to a "chop and
change" approach in the coding that may become hard to follow.



Prototyping (Computing)
The aim of prototyping is to enable input from the end user at an early
stage by giving them the look and feel of the application. This is achieved
by modeling the user interface whilst having little or no content behind
that interface.

Figure 2 shows the dimensions included in the rapid prototyping model.
Early input from the user has the potential to highlight problems early in
the design phase, thus enabling large cost savings  (Freeman 1999, &
Capper 1999). Rapid prototyping does not, however, dramatically shorten
the development time of a project (Connell & Shafer1989) as the initial
shell has to have the functionality added at a later time.

Figure 3  A non-evolutionary approach to prototyping (Connell & Shafer
1989, p. 272)

Tuning

Operation &
Maintenance

Design Derivation

User
Approval

Prototype Iteration

Database
CreationFunctions

Menus

Rapid
Analysis

Project
Plan

Dataflow
Diagrams

E-R Diagrams

Control Flow Graph

Rapid
Prototyping PROBLEM

SPACE

Figure 2  Four Dimensional Rapid Prototyping Model –  (Connell &
Shafer 1989,  p.11)



The non evolutionary model as shown in Figure 3 can be seen as less
powerful, as little more than a menu structure is shown to the user.
Software engineering regards the production of software as an engineering
problem hence a rigid model such as this will allow a much more accurate
and feasible design than might otherwise be possible. Within the
computing industry the prototyping methodology uses little or no iteration.
It is designed to present the user with what appears to be a working
system. It is, however, only an interface with little functionality - typically
a set of menus to ascertain the correctness of the design. This can be done
either by working with the end user directly or by a series of iterations in
this early design stage. Once this has been achieved and the user is happy
with the design, the functionality is then coded. A problem here is that the
user may not recognise that they are seeing a shell and have expectations
that the project is near completion.

Prototyping (courseware)
There are many hybrid extensions of the prototyping model. Carroll
(1995) believes the incorporation of scenario based design helps recognise
the tasks that are involved. Iteration can also be introduced throughout the
whole operation as shown in Fgure 4.

Figure 4. Educational Prototype with student involvement
(Pressman 1997, p. 3 as cited in Kennedy, 1998, p. 379)

This incremental development model involves developing the
requirements and delivering the system incrementally. This allows the user
to provide feedback for the latter parts of the program prior to their

Discuss general
software design in

light of desired
learning outcomes

Release software

Add software
requirements / respond

to student feedback

Build / revise
prototype

Evaluate prototype
with students



implementation. This iterative model provides the advantages of
evolutionary prototyping, which gives evaluative feedback throughout the
development process whilst maintaining a control over the direction of the
project. One of the dangers here is that unless the requirements are clearly
defined they can tend to change direction with each iteration.

Other courseware methodologies

The Pragmatic model of Carswell and Murphy (1995) sets out a five stage
courseware methodology as shown in Figure 4. This model was adapted
from three other methodologies, that of Barker and Yeates  (1984),
Alessi’s 8 stages of lesson design (Alessi 1991) and the evaluative features
of Duschastel (1993 as cited in Carswell and Murphy 1995)  It was
designed primarily due to the lack of non-complex methodologies that
were available for use for students at tertiary level.

Alessi & Trollip(1991) recommended a more detailed development
scheme. Their model has ten steps for the development of a single lesson.
They also believe it is important that the programmer understands the
overall objectives, even if working in a team with others who know them.
They stress the importance of sequencing events and recommend the use
of storyboarding to facilitate pilot testing on learners. Evaluation and
revision based on principles of cognitive psychology: perception and
attention, memory, comprehension, active learning, motivation, locus of
control, transfer of learning and individual differences should be
conducted at several points throughout the development process. Bradler
(1999) recommends a twelve stage approach similar to that of Alessi &
Trollip but, in addition, their approach includes prototyping of key
features and an attempt to identify reusable components.

Bostock and Drummond developed a model in 1995 that has since been
modified by Bostock in 1996 (Bostock 1996). They also recommend the
use of prototyping but feel it is important not to use technology for the
sake of it and all alternatives should be looked at prior to making the
decision to proceed. They stress the need to analyse the requirements and
to describe the deliverables for each phase of the development cycle.



Figure 5  The Pragmatic Model (Carswell, L., Murphy, M. 1995, p 99).

Methodology Issues: Problems of Adaptation for Education

Computing methodologies tend to have an evaluation at the early analysis
stage and testing as a final stage. Educational or courseware
methodologies tend to have evaluation and feedback done at each stage.
This is one possible reason for the differing views of prototyping with
little iteration in the computing model, contrasted with the model used in
education where a continual iterative approach is employed until all
functionality has been achieved. Computing people tend to follow a
methodology like a recipe. Most computing methodologies are very well
established and documented. Education on the other hand is far more
flexible and more often each step will depend on the result of the previous
step. Theoretical concepts although well established require too much
flexibility to become steps to be followed within a methodology.

Many of the courseware methodologies were adapted from the traditional
Waterfall model. While Bostock (1996) includes prototyping, he does not
incorporate it within a typical prototyping methodology but within the
Waterfall model. This is perhaps because the Waterfall model is the
easiest to follow and the steps are well defined, theoretically making it
easy to incorporate educational steps. Unfortunately this model is a top
down, sequential approach that is data driven. The analysis phase looks at
‘what’ will be done, with the design concerned with ‘how’.  As a result,

Stage
1

Problem
Definition

Feedback

Evaluate

Stage
2

Courseware
Specification

Feedback

Evaluate

Stage
3

Event
Design

Feedback

Evaluate

Stage
4

Implementation
Feedback

Evaluate

Stage
5

Product
Review

Feedback

Evaluate

E
V
A
L
U
A
T
I
O
N



the instructional design component tends to focus only on the design phase
where the process issues are addressed. This causes questions such as
‘why we want the courseware’ or ‘what alternatives could be
implemented’ to be often overlooked.

Alternatively, Bostock (1998) describes courseware engineering as the
mixture of two well established disciplines, software engineering as the
process of developing business applications and instructional design as the
process of developing instruction. The first question that needs to be
answered is can we run the two methodologies in parallel or do we need to
combine them into one coherent set of steps? Many developers (Riley
1995; Bostock 1996) believe that designing courseware is a team process
and the software engineering component and the instructional design are
separate tasks to be completed by different people each with their own
expertise. Software developers believe understanding the motivations
behind the request for software and the knowledge of how to successfully
address the requirements to satisfy these motivations would require an
understanding of learning processes and their outcomes (Pfleeger, 1991;
Alessi & Trollip, 1991).

Muller, Wildman and White (1993). advocate a participatory design
approach and see the participation and communication as more important
than the methodology itself, while yet another group (Kensing et.al.1993,
Carroll and Moran 1991) believes that using methodologies create many
problems, with Carroll proposing a scenario based method to aid design.
Brown (1997) concludes that current methodologies are inadequate for the
use of courseware, or any highly HCI intensive projects.

Problems with adapting data driven versus process driven systems

Shah and Bonner (2000) believe the effectiveness of methodologies needs
to be determined through metrics and benchmarking. It is important to
remember that a methodology that has been used to create one successful
application may not always be appropriate for another. The software
engineering approach is a top down data driven approach, with the
analysis phase deciding what is to be done and the design phase
determining how. It is in the transition from the requirements analysis to
that of design where the IT focus shifts from ‘what’ to ‘how’. When we
merge computing and educational methodologies, the computing part of
the methodology is spelt out but the education part is usually skimmed
over as though a presumption is made that the reader has an in-depth
knowledge of pedagogy and learning issues. An example of this is the



pragmatic model of Carswell and Murphy (1995) that sets out defined
formal steps for naïve users to follow. The model relies heavily on quality
feedback and is designed to iterate within each stage. It assumes, however,
that, on completion of a stage, the user will proceed to the next stage.
Once again the model sets in concrete the processes of the computing side
and leaves the more complex issues of the learning and educational
theories to an assumed knowledge.



Some object oriented methodologies focus on the process driven
perspective by looking at objects along with their actions as a single
perspective rather than data and the processes as separate entities
(Eriksson and Penker 1998). This may explain why Bostock (1998)
believes the translation of analysed-needs to design-functions is the
hardest part of instructional development. Bottom up or middle out
approaches such as iterative or evolving prototyping methods are the
newer generation of methodologies and are generally seen to add a quality
component by raising satisfaction with evaluative feedback. They also
allow changes to be introduced as more functionality is added to the
project.

Findings

Marrying traditional computing methodologies with educational theory is
somewhat like trying to fit a square peg in a round hole. The current linear
and sequential models that predominate are the least able to cope with
emerging constructivist theories. This is primarily due to the lack of
evaluation and feedback throughout the development cycle. Iterative
models that encourage continual user feedback and evaluation offer a
pedagogical perspective for software development well in line with a
constructivist perspective (Kennedy 1998)

Prototyping is especially valuable where requirements cannot be specified
clearly. Its use is ideal for the development of interactive multimedia. Witt
and Wager (1994) recommend prototyping for the development of
Electronic Performance Support Systems (just-in-time training), but warn
the term "prototyping" should not be misused to mean client evaluation

Whilst a prototype can give end-users a view of the system capabilities
when establishing and validating system requirements, there are issues that
need to be carefully monitored. With evolutionary prototyping the system
may become corrupted by constant change. When using an incremental
approach, latter changes to the system become increasingly difficult to
make, as the first part of the system to be developed is the least evolved at
development time.
The main disadvantage is that it is harder to control the scope of the
project as early feedback often leads to changes in the design of the
system and this may happen several times through iteration.



Conclusion: Where to Now?

It is important to be aware of the multiple range of skills required when
choosing a methodology. One that models the processes rather than the
data should be chosen. Rapid prototyping is developing as the favorite for
educational purposes and it is one that can be conducted in parallel
between education and computing; however, the definitions and
techniques need to be carefully defined so that teams working on a project
know exactly what is required of them.

There are many inherent complexities involved in the development of
educational products. It is generally accepted that the former systematic
approach based on instructional design principles employed in the
instructionist approach have been replaced with constructivism views.
Boyle (1997) believes this is partially due to advancements in technology
(e.g. hypertext) and educational design. The constructivism view
incorporates knowledge and skills across many disciplines such as
cognitive and perception psychology, evaluation, communications, project
management, media. Computer science and systems engineering is a
continually changing environment (Nicholson &  Ngai  1996).

While those in the computing field are knowledgeable about cutting edge
technologies we must remember not to use new technology for the sake of
it and the methodology used caters for evolving, or growing and must
incorporate education and evaluation at each stage. Most would agree that
developing multimedia projects needs a diverse range of expertise,
including professionals in education and technology. When proposing to
write a program, or whole subject, expertise needs to be sought from
disciplines other than computing.

References

Allessi, S. M.and Trollip, S. R. (1991). Computer-based Instruction. 2nd ed. Prentice
Hall.

Barker, P. and Yates, H. (1985). Introducing Computer Assisted Learning, Prentice Hall.
Beynon-Davies, P. (1993), Information System Development (Second ed) Macmillan

Press, Ltd. London.
Bostock, S. (1996). Courseware Engineering: An overview of the Courseware

development process.
[http://www.keele.ac.uk/depts/cs/Stephen_Bostock/docs/atceng.html]

Boyle, T. (1997). Design for Multimedia Learning. Prentice-Hall Europe.
Hertfordshire

http://www.keele.ac.uk/depts/cs/Stephen_Bostock/docs/atceng.html


Bradler, J. (1999) Developing On-line Learning Materials for Higher Education: An
Overview of Current Issues. Educational Technology & Society Vol 2(2)

Brown, J. (1997). HCI and Requirements Engineering- Exploring Human Computer
Interaction and Software Engineering Methodologies for the Creation of Interactive
Software.   Technical Report CS-TR-97/1.

Carroll, J. and Moran, M. (1991). Introduction to this Special Issue on Design Rationale.
Human Computer Interaction  Vol 6, 197-200.

Caroll, J. (1995).  The Scenario based Design: Envisioning work and technology in
system development (pp.1-18). New York: John Wiley and Sons, Inc.

Carswell, L., Murphy, M. (1995). A Pragmatic Methodology for Educational Courseware
Development, The 2nd All Ireland Conference in the Teaching of Computing, 5th-7th
September 1994, Dublin City University, Dublin, Ireland
[http://www.ulst.ac.uk/cticomp/papers/carswell.html]

Connell, J. and Shafer, L. (1989) Structured Rapid Prototyping: An evolutionary
Approach to Software Development. Prentice-Hall, Inc. New Jersey.

Duchastel, P., (1993). Towards methodologies for building Knowledge-based
Instructional Systems, Instructional Science, vol. 20, pp 49-58.

Eriksson, H.  and Penker, M. (1998) UML Toolkit: Unified Modeling Language John
Wiley and Sons, Canada.

Freeman, M and Capper, J. (1999). Exploiting the web for education: An anonymous
asynchronous role simulation. Australian Journal of Educational Technology, Vol
15(1), p. 100.   [http://cleo.murdoch.edu.au/ajet/ajet15/freeman.html]

Kennedy, D. (1998). Software Development Teams in Higher Education: An Educators
View, Conference Proceedings ASCILITE '98 December 14 -16 Wollongong. (pp.
373)

Kensling, F. and Munk-Madsen, A. (1993). PD: A Structure in the Toolbox.,
Communications of ACM Vol 36(4),

Muller, M., Wildman, D. and White, E. (1993). Taxonomy of PD Practices: A Brief
Practioner’s Guide, Communications of ACM Vol 36(4)

Nicholson, A. and Ngai, J. (1996). Managing the Development and Production of
Interactive Multimedia Courseware in Education. Australian Journal of Educational
Technology, Vol 12(1), 35-45.

Pfleeger, L (1991) Software Engineering : The Production of Quality Software (2ed)
Macmillan Publishing Company, New York.

Pressman, R. (1997) . Software Engineering: A practitioner's approach. (Fourth ed.) New
York: McGraw-Hill Inc

Reeves, T. (1992). Effective Dimensions of Interactive Learning Systems. Finding the
future: ITTE'92 Proceedings of the Information Technology for Training and
Education Conference.  Lucia, 1992 ,99-113.

Riley, F. (1995).  Understanding IT: Developing Multimedia Courseware, ITTI,
University of Hull.

Shah, J. and Bonner, D. (2000). Findings of a Workshop by the National Science
Foundation  [http://enws121.eas.asu.edu/events/NSF/report.html]

Sherman, L. W. (1995). A Postmodern, Constructivist and Cooperative Pedagogy for
Teaching Educational Psychology, Assisted by Computer Mediated Communications.
In Proceedings of CSCL 95' Conference, Department of Educational Psychology
Miami University, Oxford, Ohio.

Sommerville, I. (1996).  Software Engineering.  Addison Wesley Essex – England.

http://www.ulst.ac.uk/cticomp/papers/carswell.html
http://cleo.murdoch.edu.au/ajet/ajet15/freeman.html
http://enws121.eas.asu.edu/events/NSF/report.html


Witt, C. L. and Wager, W. (1994). A Comparison of Instructional Systems Design and
Electronic Performance Systems Design. Educational Technology, July-August, 20-
24.

Copyright  2000 Andrew Hunter and Ainslie Ellis

The author(s) assign to ASCILITE and educational non-profit institutions a non-exclusive licence to
use this document for personal use and in courses of instruction provided that the article is used in
full and this copyright statement is reproduced. The author(s) also grant a non-exclusive licence to
ASCILITE to publish this document in full on the World Wide Web (prime sites and mirrors) and in
printed form within the ASCILITE 2000 conference proceedings. Any other usage is prohibited without
the express permission of the author(s).




