Lancaster and Tetlow 361

Does automated anti-plagiarism have to be complex?
Evaluating more appropriate software metrics for
finding collusion

Thomas Lancaster and Mark Tetlow
Department of Computing
University of Central England
Birmingham UK
B422SU

Abstract

Much research in the plagiarism detection literature relates to attempting to discover which
students have copied student source code submissions from one another — a process
commonly known as collusion. The majority of the collusion literature suggests that structure
metrics (metrics that look beyond semantics to attempt to find disguise) are the most
appropriate comparators for finding such collusion. This paper contrasts two paired structure
metrics with a paired superficial metric, the metrics having been identified from the plagiarism
detection literature. The metrics are compared on a corpus of Visual Basic source code, a
programming language that has not been considered previously in the detection literature. The
results find that the superficial metric considered, Lancaster word pairs, which calculates the
proportion of consecutive words in common between two documents more accurately
differentiates between collusion and coincidence and can be argued to be the most effective of
the metrics. This suggests that the premise that structure metrics are the most appropriate
methods for automated detection might need to be reconsidered.

Keywords

plagiarism detection, student cheating, software metrics

Motivation for the source code plagiarism detection study

An important component of an academic award in computing is that students should demonstrate an ability to
program, that is to write a piece of source code that meets a given specification. Programming is a skill often
compared to riding a bicycle; it is not something that can be picked up by merely reading about it, instead it
requires practice. It is perhaps inevitable that some students may resort to unfair means to complete such
source code submissions. One example of this includes working with other students and submitted derived
versions of each other’s work, a process known as collusion. A second example involves taking another
student’s work and submitting that or an alternative version of it, a process named by Culwin and Lancaster
as intra-corpal plagiarism (Culwin & Lancaster, 2001). It has also been noted that some students are resorting
to using external agencies, such as RentACoder.com or Internet cheat sites, like FreeEssays.com, to complete
assignments on their behalf. The detection of this type of plagiarism is beyond the scope of this paper
(Lancaster & Culwin, 2005b).

In order to maintain the momentum on their side tutors have been relying on plagiarism detection engines
that can take a corpus of student submissions and look for intra-corpal plagiarism. This process can be
complicated by the fact that a student may not submit an identical submission to one of their peers; instead
they may incorporate elements of disguise into the submission.

For instance a solution modelling a light switch may contain methods to switch the light on and to switch it
off, but the order in which these two methods are listed should not affect the correct working of the program.
A student with little technical knowledge could reorder these two methods as an attempt at disguise. Another
possible disguise strategy, without going into technical details, would be to rename the methods, for instance
a method to turn a light off could be renamed from switchOff() to turnLightOff() and there are many more
complicated alternativesavailable. The method through which a corpus of source code submissions can be
compared and similarity identified is known as a metric. If a metric is to be considered appropriate it needs to
be able to see through any student attempts at disguise.

362 ascilite 2005: Balance, Fidelity, Mobility: maintaining the momentum?

Culwin, MacLeod and Lancaster’s study of the usage of source code detection on the largest scale, from
2001, revealed that only 26% of responding UK higher education computing departments used automated
plagiarism detection methods (Culwin et al., 2001). This figure suggests that there is still a need to educate
tutors about the availability of and necessity for such tools. Two main systems were deployed, the Measure
of Software Similarity (MOSS) (Boywer & Hall, 1999) system and the JPlag system (Prechelt & Phlippsen,
2002). The study quotes personal correspondence that suggests that around 10% of any corpus of source code
submissions sent for processing to MOSS will contain intra-corpal plagiarism. Although this evidence is
largely anecdotal it is a relatively large proportion of any student cohort. This would suggest that there is an
urgent need for automated plagiarism detection to be used for any programming assignments. The study also
noted that the similar pairs of submissions found across the two engines can differ, suggesting that neither
submission will find all similar pairs of submissions and that the real figure may be higher.

Lancaster and Culwin categorised several types of systems for plagiarism detection based around the metrics
that each deployed (Lancaster & Culwin, 2005a). These classifications were designed to remove
inconsistencies in the existing literature. Of particular note are those types of metrics that Lancaster and
Culwin identified that applicable to this source code and hence will be most relevant to the remainder of the
study reported in this paper. All of the metrics discussed are known as paired metrics, this means that they
process two submissions at a time and look for a level of similarity within them. Those pairs of submissions
containing the higher levels of similarity are hence the ones that will need to be investigated by a tutor
looking for possible plagiarism. The metrics can also be classified as superficial metrics, where any kind of
simple count of some measure common to two documents can be made and structure metrics, which depend
on some level of parsing the documents prior to processing.

In a further study Lancaster and Culwin looked into the historical source code detection literature (Lancaster
& Culwin, 2004a). One main trend amongst recent source code detection engines was evident. Both MOSS
and JPlag used structure metrics. Although the engines do not publish details of the full workings of their
systems they are believed to use a two-stage process. The first stage consists of tokenisation, taking a piece
of source code and replacing any features that could be individualised with a standard token. For instance this
could involve replacing variable names or programming keywords that could be easily changed. The second
involves searching for common substrings, although the exact comparison algorithm used here is not known.
Other recent engines that are believed to use this type of metric include YAP3 (Verco & Wise, 1996a; 1996b)
and Big Brother (Irving et al., 2002).

There is little recent evidence to suggest that this style of metric is inappropriate for source code detection.
There has only been one identified post 1990 investigation where a superficial metric has been considered
(Jones, 2001) where Jones reconsidered some of the earliest source code plagiarism detection ideas attributed
to Halstead (Halstead, 1977). Jones study showed that a count of the number of tokens common to two
submissions and the number unique between two submissions could be made and the values compared using
a closeness calculation. However Jones also found that this technique was not foolproof. Lancaster and
Culwin have suggested an alternative, known as the ‘Lancaster word pairs’ metric, originally developed to
find similar in student submissions in free text, such as essays (Lancaster & Culwin, 2004b). The metric
works simply by calculating the proportion of pairs of consecutive words in common across two documents.
The authors suggest that this metric should be largely language independent and could be applicable to
source code.

One largely unrelated metric has also been considered in the recent relevant literature. This is an example of
a structure metric that does not use a pre-processing stage of tokenisation and is known as the compression
metric. The metric was originally tested for this purpose by Saxon (Saxon, 2000) and tested further by
Campbell and Culwin (Campbell & Culwin, 2003). The metric relies on the premise that compression using
the zip algorithm looks for areas of replicated content. Where such duplication occurs both areas can be
considered together for compression, replacing both areas by a representative token and hence dramatically
reducing the size of the compressed file. Hence, where two documents are largely similar if compressed
together their size should be close to that of the size of these documents compressed individually. The initial
study by Saxon suggested that this metric could give better results than a structure metric (Lancaster &
Culwin, 2005a); however, Campbell could not replicate such good results when compared with the MOSS
engine (Prechelt et al., 2002).

The source code detection literature has revealed one major omission, the lack of any detection solutions for
detection of source code submissions written in the Visual Basic language. In their study Culwin, MacLeod
and Lancaster found that 25% of UK higher education computing schools would require a national service to
provide detection for this language, but that none of the existing detection engines supported it (Culwin et al.,
2001). This omission can be considered surprising since Visual Basic is a commonly used language in
industry.

Lancaster and Tetlow 363

This study aims to investigate the main classes of metrics that could be used to detect plagiarism in source
code submissions and due to the absence of current studies it is produced with particular reference to the
Visual Basic language. The study will consider a paired structure metric that uses tokenisation, a paired
structure metric using compression and a paired superficial metric using word pairs. If the majority of
literature and existing tools can be considered indicative the first of these will be the most successful.

Considerations for detection in Visual Basic

The Visual Basic language has been chosen as the basis for this study since it is a language for which widely
available detection engines do not appear to have been previously implemented. Although the results of the
study could be argued to be dependent on the programming language being considered they can also be
considered to be applicable to other languages. This would be an item for future study. As with most
programming languages Visual Basic has its own idiosyncrasies that must be addressed to ensure that the
methods tested are appropriate for their use.

Most of the existing plagiarism detection engines operate on a corpus of single files; for example these might
include class files in Java, or essays on the same theme in free text. A Visual Basic project, the base unit in
Visual Basic operates, consists of a minimum of two files, the project file and the form file. The project
might also contain addition files in the form of class files and module files. In order for the tests to be
complete it is necessary for all of the files making up a project to be compared, differentiating the most
applicable techniques for Visual Basic from those for detection in other languages.

To counteract this the metrics being tested will operate on the Visual Basic project concatenated into a single
file in a standard order based on the component files contained within it. If the metrics used are successful
this choice of ordering should not affect the quality of the results obtained.

Disguise strategies

In order to assess the suitability of the three metrics it is necessary to construct a suitable indicative corpus of
documents that represent the different ways in which a student may choose to plagiarise. A metric could then
be considered to be effective if it can identify these different methods that students could use to cheat. There
is no standard data set for this purpose, although a number of academics have attempted to identify different
program modification methods.

Figure 1 shows Hamblen and Parker’s traditional spectrum of modifications that can be made to source code
programs without changing the results of executing the code (Hamblen & Parker, 1989). These can be
considered to represent the different disguise strategies that a student might use to submit source code written
by another student as if it were the result of their own effort. These can be considered to represent the
different modifications that a successful plagiarism detection engine will need to successfully identify.

The possible modifications listed by Hamblen and Parker range in sophistication. At the lowest level, their
L1 categorisation, changes are only made to comments, requiring little technical knowledge. The other end of
the spectrum contains their L6 categorisation, where changes are made to the software’s main locus of
control. Since it could be argued that a student exhibiting this level of technical prowess has demonstrated
successful programming ability it is more important to identify the changes at the lower end of the spectrum.

LO. No changes.

3ao5

L1. Comments. 93 g
L2. Identifiers S0y
: " Q0 9

L3. Variable position. D =5
L4. Procedure combination. g' @

LS. Program statements.
L6. Control logic.

Figure 1: Hamblen and Parker’s program plagiarism spectrum

364 ascilite 2005: Balance, Fidelity, Mobility: maintaining the momentum?

Other academics have identified alternative techniques. For instance, Jones identifies the ten plagiarism
transformations shows in Figure 2 (Jones, 2001). Joy and Luck consider two main classifications of
techniques: lexical changes not dependent on program structure and structural changes that require more
language specific skills (Joy & Luck, 1999). There is some level of overlap between these different
classifications. Joy and Luck’s lexical changes largely correspond with Jones’ transformations 1 to 7 and
Hamblen and Parker’s levels L1 to L5, although it must be stressed that this is not a direct mapping. Joy and
Luck’s lexical changes cover the higher levels, namely Jones’ transformations 8 to 10 and Hamblen and
Parker’s Lo6.

Verbatim copying.

Changing comments.

Changing white space and formatting.

Renaming identifiers.

Reordering code blocks.

Reordering statements within code blocks.

Changing the order of operands/operators in expressions.
Changing data types

. Adding redundant statements or variables.

0. Replacing control structures with equivalent structures.

Figure 2: Jones’ plagiarism transformations

The synchronicity between the different sets of disguise strategies has led to the development of a set
considered suitable for testing for collusion on Visual Basic projects, designed to cover the ways in which
students are believed to plagiarise and covering a representative sample of the different techniques. These
will be tested by manually inserting plagiarism into a Visual Basic corpus. The techniques chosen for testing
are summarised in Table 1.

Table 1: Possible plagiarism techniques to be tested

Name of technique | Summary of technique

Original A direct copy with no attempt at disguise.

White space The white space in the document has been reorganised, extra spaces or tabs may have
been added, or they may have been removed.

Comments Comments have been added, altered or removed.

Identifiers Names of the identifiers in the program have been changed.

Blocks Sections of code for which the ordering has only a superficial effect on the program, such

as methods, have been reordered.

Inner blocks Sections of code within a method have been reordered where the result has no effect on
the implementation, such reordering variable declarations.

Control structures More structural dependent attempts at disguise have been implementing without altering
the results, such as replacing a loop or conditional structure.

Implementation of metrics

Three metrics have been selected to be implemented, as a comparative sample of those used both
traditionally and most recently within the plagiarism detection literature. The exact implementations
developed have been chosen to be appropriate for the concatenated Visual Basic project files.

The metrics used are all paired in origin; this means that they require two projects to operate on, computing a
similarity score from each. This score is nominally scaled between 0 and 100, with 100 intended to illustrate
the higher levels of similarity, although these cannot be perceived as simple percentages. Instead,
operationally, a tutor might choose to start with those pairs of projects designated to have the highest levels
of similarity, check these for potential plagiarism and then work iteratively down through the list until such a
point where no further checks have been deemed by them to be appropriate.

Lancaster and Tetlow 365

Outline algorithms to describe how each of the three metrics being considered can be computed are shown in
Table 2.

Table 2: Possible metrics for finding collusion in Visual Basic source code

Name of metric Representative algorithm

Lancaster word pairs Consider two concatenated Visual Basic projects, denoted A and B.

For each document compute a sorted list of all pairs of consecutive words, along with a
count of the number of times this pair appears. Denote these lists A and B respectively.

Compute values c1, c2, ¢, u1, u2 and u, representing commonality and uniqueness
between the projects, where:

c1 is the number of times a pair of words occurs in a, so long as it occurs at least once in

b.

c2 is the number of times a pair of words occurs in b, so long as it occurs at least once in
a.

c=cl+c2.

u1 is the number of times a pair of words occurs in a, so long as does not occurs in b.
u2 is the number of times a pair of words occurs in b, so long as does not occurs in a.
u=ut+u2

Then similarity score for A and B = 100c / (c + u).

Tokenised longest Consider two concatenated Visual Basic projects, denoted A and B.

common substrings Produce two further documents, denoted a and b respectively, which are tokenised
versions of A and B. Denote the length of these documents, in words and tokens, as la
and Ib respectively.

Compute the longest substring common to both A and B, with a minimum length of five
words or tokens. A common substring is defined as a series of words and tokens
common to both documents and in the same order, but not necessarily consecutive to
one another.

Iteratively repeat this process on the words and tokens in A and B that have not yet been
allocated to a substring, until no further allocations are possible.

Denote the total length of these substrings as Ic.
Then similarity score for Aand B =200 Ic / (la + Ib).

Compression Consider two concatenated Visual Basic projects, denoted A and B.

Produce two further documents C and D, where C is A with B appended to it and D is B
with A appended to it.

For each of A, B, C and D, compress it using the zip algorithm and compute its size,
giving a, b, c and d respectively.

Then similarity score for Aand B =100 ((2(a + b) / (c + d)) — 1)).

The tokenisation strategy chosen works by iterating around a Visual Basic project, looking for certain
features that can be related to known keywords. For example, consider the structure:

Else If (conditional statement) Or / And (Another Condition) Then

End If
Here the conditional statement could vary between student documents without changing the overall structure
of the code. The Or /_And (Another Condition) is optional. Only the Else If, Then and End If components are
both required in their exact form. The tokenisation method used would lines of these forms to two common
and represented tokens to ensure that anything of this form is flagged as possible plagiarism. The
implementation used looks for any of 16 representative Visual Basic statements, which are processed in a
defined order. This tokenisation stage is implemented using regular expressions.

For the purposes of these tests the detection engine has been implemented using the Java programming
language, although this choice of language should have no influence on the validity of the results. The zip
compression algorithm has been implemented using the provided java.util.zip package of classes for data
compression. The formula for compression relies on the informal observation that the size of two
concatenated compressed files is never more than the sum of the sizes of the two individually compressed
files and is always more than the size of either of these individual compressed files. This observation has
successfully held in practice.

366 ascilite 2005: Balance, Fidelity, Mobility: maintaining the momentum?

Comparative tests

In order to assess the suitability of the three metrics a corpus of five Visual Basic projects has been collected.
Each of these has been disguised using the seven possible plagiarism techniques listed in Table 1 and the
similarity score detailing how much commonality there is between the original document and its plagiarised
version has been calculated.

Tables 3 to 5 summarise the results of these computations under the three different metrics. In each case the
mean similarity score for the five pairs is shown, along with the minimum, maximum and range of the scores
received. As a comparative value, the mean similarity score for every possible set of pairs from the ten
documents created, giving a total of 55 pairs, is shown. This includes the 50 pairs that could be considered to
have little commonality, which is comparable to what could be expected from a corpus submitted directly
from students. The final row of each table, denoted ‘factor’, shows the ratio between the mean similarity
score of the plagiarised pairs and the mean similarity score from the overall corpus. This gives an indication
of how well the metric differentiates the plagiarised pairs from the remainder of the corpus. The higher
values of this ratio represent greater levels of differentiation.

Table 3: Plagiarism detected under the Lancaster word pairs metric

White Inner Control
Original space Comments | ldentifiers Blocks blocks structures

Mean 100.0 99.8 91.8 91.9 99.7 97.8 98.1
Min 100.0 99.1 88.9 83.8 99.0 96.9 97.2
Max 100.0 100.0 93.1 96.1 100.0 98.6 99.0
Range 0.0 0.9 4.2 12.4 1.0 1.6 1.8
Unrelated 63.0 39.2 38.6 39.2 39.2 39.2 39.2
Factor 1.6 25 24 23 2.5 25 2.5

Looking purely at the similarity scores obtained by the Lancaster word pairs metric, as shown in Table 3,
demonstrates that this metric is very successful at finding superficial changes, such as comments, identifiers
and white space, giving scores ranging anywhere from 83.8 to 100. These could be considered to be in the
range that a tutor would check. Perhaps surprisingly, as there is no attempt at tokenisation involved, the
metric gives even better scores for the more structural changes, such as blocking and control structures. The
range of values obtained from the plagiarised pairs varies by no more than 1.8. This shows that attempts at
disguise leave enough pairs of code words unchanged that the metric can see through this.

The factors differentiating between commonality purely due to the constraints of programming in the same
language and the copied pairs are all 2.3 or greater. This would suggest a clear cut off point for any tutors
looking down a list of ordered results to find similarity.

Table 4: Plagiarism detected under tokenised longest common substrings metric

White Inner Control
Original space Comments | Identifiers Blocks blocks structures

Mean 99.7 99.5 99.5 98.0 99.7 98.3 99.4
Min 99.4 98.2 98.2 97.5 98.8 96.8 98.5
Max 100.0 100.0 100.0 99.2 100.0 99.6 100.0
Range 0.6 1.8 1.8 1.7 1.2 27 1.5
Unrelated 63.9 62.2 64.2 64.2 64.2 64.2 64.3
Factor 1.6 1.6 1.5 1.5 1.6 1.5 1.5

The results for the tokenised longest common substrings metric, as shown in Table 4, are also largely
conclusive. There is a slight curiosity with the implementation of the metric used in that it returns slightly
less than a score of 100 for identical submissions. This is largely due to the manner in which multiple Visual
Basic programs are combined to make a single project and has no bearing on the validity of the results.

Lancaster and Tetlow 367

The results generally give clear and consistent differentials between the plagiarised pairs and the overall
corpus statistics. The plagiarised pairs have a similarity score close to 100 and an unrelated score around 64.
Informal tests have shown that this type of metric is particularly suited to identifying changes in looping
structures and, to a lesser extent, changes in conditionals. The clear cut off point between plagiarism and
coincidence shows that this metric is useful for tutors, supporting the literature research.

Table 5: Plagiarism detected under compression metric

White Inner Control
Original space Comments | ldentifiers Blocks blocks structures

Mean 70.4 59.9 57.5 62.8 63.2 67.0 63.1
Min 3.0 2.8 28 3.0 3.0 3.0 3.0
Max 89.5 83.3 80.6 84.1 88.2 87.6 86.4
Range 86.4 80.4 77.9 81.1 85.2 84.6 83.4
Unrelated 36.1 375 357 36.1 36.1 36.1 36.1
Factor 1.9 1.6 1.6 1.7 1.7 1.9 1.7

Table 5 shows the results obtained under the compression metric. Although there appears to be a cut off point
between the plagiarised and non-plagiarised it is not as clear-cut as that from the Lancaster word pairs or the
tokenised longest common substrings metric. One reason for this is that when the submission is compressed
with the exact copy of itself the result returned is lower than 100. There is a range of 86.4, showing a
discrepancy almost matching the entire possible range of scores from 0 to 100.

In this case the raw scores obtained from each pair make the reasons for the discrepancy more obvious. One
of the five Visual Basic projects from which the plagiarised versions were derived compressed to give an
initial similarity score of 3.0, showing that the choice of zip algorithm used struggled to process this
particular document. This might be a sign that the success of this approach is very dependent on the exact
choice of implementation by the developer, and hence that to use this metric would give very capricious
results. When this particular pair of documents is removed from the corpus the remaining results give
discrepancy factors along the same lines as the ones received the Lancaster word pairs metric, which might
be an indication of how the results have been received favourably in other studies. In this case the metric
cannot be recommended.

Table 6 summarises the results obtained across this corpus under the different metrics. The table
demonstrates how clearly the results give a clear cut off point between likely plagiarism and random
similarity.

Table 6: Comparison of metrics tested on different plagiarism methods

White Inner Control
Original space Comments | Identifiers Blocks blocks | structures

Lancaster word
pairs 1.6 25 24 2.3 25 25 25
Tokenised longest
common
substrings 1.6 1.6 1.5 1.5 1.6 1.5 1.5
Compression 1.9 1.6 1.6 1.7 1.7 1.9 1.7

Taken at face value the results support the Lancaster word pairs metric as being the most suitable. The results
are interesting as this is largely a superficial attribute counting metric that has not previously been applied to
source code. Whilst both compression and tokenised longest common substrings give reasonable results there
is not sufficient evidence to suggest that these are more appropriate for this corpus.

368 ascilite 2005: Balance, Fidelity, Mobility: maintaining the momentum?

Conclusions

This paper has compared three metrics from the literature, all of which have been argued to be suitable for
plagiarism detection, on a new version of the problem, to detect plagiarism in Visual Basic code. The tests
have been carried out on a corpus representative of student submissions with five of them manually changed
to introduce different types of plagiarism.

The tests found that the Lancaster word pairs metric, which assesses the proportion of consecutive words or
tokens that the two submissions have in common, was the most successful of the metrics. This metric had
previously only been applied to free text. The metric most reported to be appropriate for detection within free
text, the tokenised longest common substrings metric, was also found to be successful, but not at the same
level as the Lancaster word pairs metric.

The most disappointing results were reserved for the compression metric, which proved to only partially
successful, largely dependent on the original source document from which the plagiarised copies were
derived. This might be because of the choice of the implementation of the zip algorithm, or this could be due
to the decision to implement the results on Visual Basic code. It does suggest that this metric is not the
‘miracle cure’ for plagiarism that the literature might have you to believe.

One shortcoming identified with the Lancaster word pair metric is that although it has proved to be very
suitable for discovering which pairs of submissions are plagiarised, it is not likely to form the basis for a
complete plagiarism detection process. This is because the metric, on its own, does not provide any location
metric stating where two documents have been judged to be similar to one another. One advantage of the
tokenised longest common substrings metric is that this has to compute sequences of similarity in order to
work out the extent of similarity. This information can easily be provided to a tutor to provide a more usable
detection process. This functionality has been implemented into a prototype tool, which is shown in Figure 3.

- By s—
& Plagianization Tool | B |
Pairs Lock. frm BinaryClock. frm 92. 50257 0 = 207 42331287
212 > 220 1.6359918
| 285 > 249 4.907975
- Copy of 1 254 > 299 9.202455
1 297 > 299 0.40899195
297 > 299 0.40899795
%% 93.3242 T _ 1l
= U5 Enam -
415, | 409. End Function —
416. This function calculates thinary values... 410,
417, 'This function return the clock time 411, ‘calculates the binary number of 2 loop to setthe modes of the rules
418. Private Funetion decimal2Binary(Byval inputDecimal A5 Long, size As Integen 412, Private Function decimal2Binan(Eial inputDecimal 45 Long, size As Integen
Az String Ag String
419 Dirn calcBinary As String 413, Dim calcBinary A3 String
420, Dim spacesBinary A3 String 414, Dim spacesBinary A3 String
421, DimiAs Integer 415, DimiAs Integer
422 calcBinary="" 416, calcBinany=""
423 spacesBinary=" 417, spacesBinar="
424 1=0 418, =0
425, Do 'strigifies the binary val 419, Do 'calculates the binary value and puts itin a string
429, ‘pads the string 423, ‘makes the string a certain length - preceeding 0's
430, DoYWhile (gize = i + LenicalcBinard) 424, Do'While (size = i + Len{calcBinang)
431, spacesBinary = spacesBinary &"0" 435 spacesBinary = spacesBinary & "0"
4320 i=i 426 Q=i+
433 Loop 4327 Loop
434, decimalZBinary = spacesBinary & calcBinary returns the completed string 425, decimalZBinary = spacesBinary & calcBinary returns the completed string
435. End Function 429, End Function
436, 430,
437. ' getthe current time function... 431, 'getthe current time function...
438 'This function return the clock time 437,
4349,

Figure 3: Identifying areas of similarity in Visual Basic code

Lancaster and Tetlow 369

The results have demonstrated that a metric for free text submissions can successfully be applied to source
code submissions. However, testing solely on two languages is not sufficient to suggest that the Lancaster
word pairs algorithm would be suitable for a wider range of cases. There are a number of idiosyncrasies
across different languages that might suggest that a wider ranging study is needed. The production of a
common corpus of documents, or a common range of plagiarism techniques to test against, could prove to be
a basis for further work to give a clear framework on which to base effective detection tools upon. Although
the work presented in this paper might form the basis for such a study it is not considered to be ideal as there
is no clear mapping given about how this could be translated across different languages and into free text.

Visual Basic is not a programming language that has been widely considered in the detection literature
before. Despite this, this study has shown that a range of suitable algorithms exists for detection of source
code plagiarism. It is likely that this is also true for other programming languages that have not yet been
considered.

There is now no reason why student source code should be submitted without having been checked for
collusion, if for no reason other than the peace of mind of the tutors concerned. This can help to ensure that
academic integrity has been preserved and students have successful worked for the qualifications that they
are subsequently awarded. Computing departments without a clear anti-plagiarism strategy need to consider
that such tools are easily available or can be produced.

References

Boywer, K. W., & Hall, L. O. (1999). Experience using “MOSS” to detect cheating on programming
assignment. Paper presented at the 29th ASEE/IEEE Frontiers in Education Conference, San Juan, Puerto
Rico (pp. 18-22).

Culwin, F.; & Campbell. (2000). Using compression to identify plagiarised programs. Paper presented at the
4th Annual Conference of the LTSN Centre for Information and Computer Sciences, Galway, August
2003.

Culwin F., & Lancaster T. (2001). Visualising intra-corpal plagiarism. Paper presented at the International
Conference on Information Visualisation, London, UK.

Culwin, F. MacLeod, A., & Lancaster, T. (2001). Source code plagiarism in UK HE computing schools,
issues, attitudes & tools. South Bank University Technical Report, SBU-CISM-01-02.

Halstead, M. H. (1977). Elements of software science. (n.p.): Elseveir.

Hamblen, J. O., & Parker, A. (1989). Computer algorithms for plagiarism detection. /[EEE Transactions on
Education, 32(2), 94-99.

Irving, R., MacDonald, G., McGookin, D., & Prentice, J. (2002). Big Brother (Glasgow University Computer
Science Department’s collusion detector system, version 2.0) user manual. (Available from Glasgow
University)

Jones, E. L, (2001). Metrics based plagiarism monitoring. Paper presented at the 6th Annual CSSC
Northeastern Conference, Middlebury, VT.

Joy, M., & Luck, M. (1999). Plagiarism in programming assignments. /[EEE Transactions on Education,
42(2), 129-133.

Lancaster T., & Culwin F. (2004b). A visual argument for plagiarism detection using word pairs. Paper
presented at Plagiarism: Prevention, Practice and Policy Conference 2004. Organised by JISC Plagiarism
Advisory Service, Newcastle, UK.

Lancaster, T., & Culwin F. (2005b). Preserving academic integrity — Fighting against non-originality
agencies. (To appear in British Journal of Educational Technology in 2005)

Lancaster, T., & Culwin, F. (2004a). A comparison of source code plagiarism detection engines. Journal of
Computer Science Education, 4(2), 101-118.

Lancaster, T., & Culwin, F. (2005a). Classifications of plagiarism detection engines. Italics, 4(2). Retrieved
June 24, 2005, from http://www.ics.ltsn.ac.uk/pub/italics

Prechelt, L., Guido, M., & Phlippsen, M. (2002). JPlag: Finding plagiarisms among a set of programs with
Iplag. Journal of Universal Computer Science, 8(11), 1016—-1038.

370 ascilite 2005: Balance, Fidelity, Mobility: maintaining the momentum?

Saxon, S. (2000). Comparison of plagiarism detection techniques applied to student code: Computer science
project (Pt. 11). Cambridge: Trinity College.

Verco, K. L., & Wise, M. J. (1996b). Software for detecting suspected plagiarism: Comparing structure and
attribute-counting systems. Proceedings of first Australian conference on computer science education,
Sydney, Australia.

Verco, K. L., & Wise, M. J. (1996a). Plagiarism a la mode: A comparison of automated systems for detecting
suspected plagiarism. The Computer Journal, 39(9), 741-750.

Copyright © 2005 Thomas Lancaster and Mark Tetlow

The author(s) assign to ascilite and educational non-profit institutions a non-exclusive licence to use this document for
personal use and in courses of instruction provided that the article is used in full and this copyright statement is reproduced.
The author(s) also grant a non-exclusive licence to ascilite to publish this document on the ascilite web site (including any
mirror or archival sites that may be developed) and in printed form within the ascilite 2005 conference proceedings. Any
other usage is prohibited without the express permission of the author(s).

