
DESIGN PRINCIPLES FOR AUTHORING DYNAMIC,
REUSABLE LEARNING OBJECTS

Tom Boyle
Learning Technology Research Institute (LTRI)

London Metropolitan University, UNITED KINGDOM
t.boyle@londonmet.ac.uk

Abstract
The aim of this paper is to delineate a coherent framework for the authoring of re-
purposable learning objects. The approach is orthogonal to the considerable work
into learning object metadata and packaging conducted by bodies such as IMS, ADL
and the IEEE. The 'learning objects' and standardization work has been driven
largely by adding packaging and metadata to pre-constructed learning artefacts.
This work is very valuable. The argument of this paper, however, is that these
developments must be supplemented by significant changes in the creation of
learning objects. The principal aim of this paper is to delineate authoring principles
for reuse and repurposing. The principles are based on a synthesis of ideas from
pedagogy and software engineering. These principles are outlined and illustrated
from a case study in the area of learning to program in Java.

Keywords
Learning objects, repurposing, pedagogy, software engineering, programming,

Java, compound objects

Introduction

Good eLearning resources are expensive to produce. The effectiveness of these resources, however, and
the return on the investment made, has traditionally been limited by a number of factors. Resources
developed within particular Virtual Learning Environments (VLE) or Managed Learning Environments
(MLE), for example, could not be transferred for use in others. The challenge of making learning
resources 'interoperable' across different systems thus became a major goal. At a higher level, tutors often
wished to reuse and repurpose learning resources to meet the perceived needs of particular contexts and
students. However, learning resources were often monolithic; the resources had to be taken on an all-or
nothing basis. The challenges of interoperability, reuse and repurposing of eLearning resources thus
attracted considerable development effort (Duval, 2001).

The primary response to these problems has been the international work directed at developing learning
object standards. The concept of learning object is defined very broadly. The IEEE standardization draft
defined learning objects as:

a learning object is defined as any entity, digital or non-digital, that may be
used for learning, education or training. IEEE (March, 2002).

The standardization work has involved a number of major organizations, e.g. IMS, ADL, and IEEE. The
work proceeded in several parallel strands tackling different facets of the standardization work. The two
most significant strands pertinent to this paper are the work on metadata and learning object packaging.
Metadata refers to the controlled taxonomy and related vocabulary used to describe learning objects. In
June 2002 the IEEE agreed a standard for learning object metadata (LOM). This standard was based on a
proposal developed by IMS (originally called 'Instructional Management System) which is turn had
consolidated work from a number of other bodies.

IMS has also developed a proposed standard for learning object packaging. The basic proposal is to take
any learning object and provide a 'wrapper' around this object. This wrapper describes the component
structure of the object, and includes the descriptive metadata. The learning object is thus 'packaged' in a
standard container format. This packaged object can be stored in digital repositories. The metadata
permits fast effective searches to retrieve learning objects suitable for a particular purpose (e.g. Koppi &
Hodgson, 2001). These learning packages should then be interoperable across different LMS (learning
Management Systems) as the vendors bring their tools into compliance with the standards. The SCORM
reference model provides a higher-level framework which relates these major strands within the broader
work on standards development (SCORM, 2002; RHA Associates, 2002)

This work is very valuable. It is making a very significant impact on the evolution of eLearning.
Calverley (2002) provides a good guide to the relevance of this work to creating re-usable learning
materials. The central argument of this paper, however, is that this approach is not enough. In order to
provide a non-contentious basis for standardization, a learning object is defined to be almost anything.
The standards are declared to be pedagogical neutral (IEEE, 2002). The approach thus does not make any
statement about the authoring of learning objects. However, there is a marked limit to the productive
reuse and repurposing of learning objects that have not been designed for these purposes in the first place.
There is, in the end, a limit to what can be achieved by intervention after the event (after the design and
authoring process). We cannot, of course, change the past. In the future, however, learning objects must
be developed with potential reuse, and especially repurposing in mind. The principal aim of this paper is
to explore and delineate principles underlying authoring for reuse and repurposing.

Towards a synthesis of Software Engineering and pedagogical principles

Software engineering is concerned with the design, development and maintenance of large complex
software systems. A major challenge in software engineering has been the issue of developing
'maintainable' systems. The use of the word 'maintenance' here underplays the nature and scale of the
problem. Software systems evolve over time to meet the developing needs of the commercial context in
which they are used. The software thus has to be adapted to meet these new challenges. It is claimed that
over 70% of commercial software engineers’ time is spend on 'maintenance'. However, changing software
is a difficult and error prone process. The discipline of software engineering has thus developed principles
for the development of systems that are designed to be 'maintained'. A principal focus for several of these
principles is appropriate modularization - breaking the whole into software units designed to ease the
maintenance problem. These principles have direct relevance to the development of learning objects that
are designed for re-use and repurposing.

The first principle in that of cohesion - each unit should do one thing and only one thing (Sommerville,
2000; Pressman & Ince, 2000). A direct link can be made to the idea of learning objectives in pedagogical
theory. This mapping suggests that each learning object should be based on one learning objective or
clear learning goal. This may be illustrated by the work on introductory programming in Java referred to
later in the paper. There are, for example, three types of loops (language constructs for repeating blocks
of code) in Java. Textbooks usually treat these together. The principle of cohesion, however, indicates
that there should be a separate learning object for each type of loop. An immediate advantage is that the
tutor can select the order in which these learning objects are combined. A tutor dealing with experienced
student may wish to deal with these in sequence; another tutor with a different group of students may
intersperse these learning objects with object dealing with other features of the language.

In order to provide this freedom to order learning objects a further design principle is important. This is
the principle of 'de-coupling', or more accurately minimized coupling. This principle states that the unit
(software module/learning object) should have minimal bindings to other units. Thus the content of one
learning object should not refer to and use material in another learning object in such a way as to create
necessary dependencies. One object then cannot be used independently of the other (Sommerville, 2000;
Pressman & Ince, 2000).

This principle is crucial in design for reuse. The learning object should, as far as possible, be free
standing. For example, a learning object on one type of programming loop should not refer specifically to
content covered in another object. If we move the object it should still be fully understandable and
function to achieve its learning objective. The vision then is of a group of cohesive and decoupled

learning objects that can be selected and ordered to provide different learning experiences. This provides
one type of adaptation based on inter-object selection and ordering.

The decoupling of learning objects is a considerable challenge. As eLearning designers we tend to think
of the overall impact on learning, and strive to achieve rich, integrated learning experience. The challenge
is to maintain this richness in a system composed of reusable components. There are a number of
significant advantages, however, in taking on this challenge. These advantages are explored in the
example on learning objects for introductory programming described later in this paper.

There is a final, crucial challenge that must be tackled to make these learning object rich and effective
learning experiences. It would certainly be possible to create a list of learning objects that where cohesive
and relatively decoupled, but were also pedagogically barren. We must face the challenge of creating
learning objects that are cohesive, decoupled and pedagogical rich. This design challenge is associated
with the issue of 'repurposability' as we might expect rich learning objects to provide further options for
adaptation by local tutors.

Rather than pursue the argument at a more abstract level, it is useful at this stage to study the realization
of these principles in a concrete implementation. This study concerns the developments of learning
objects for introductory programming in the Java language. This is an ongoing study being conducted at
London Metropolitan University. It will be used to illustrate how the challenges of cohesion, pedagogical
richness and decoupling are being tackled. This will then provide the basis for a further clarification, in
the later part of the paper, of the principles involved.

Learning objects for introductory programming in Java

Java has become a very popular candidate for the teaching of introductory programming at university
level. Java meets the constructivist criterion of being an 'authentic' topic for study (Grabinger & Dunlop,
1995). It is a powerful, real world language that can be used to create applets for the Web or full software
systems. Tutors also like the language because it embodies the Object Oriented paradigm that is so
influential in modern computing. There are thus good reasons for teaching Java. Unfortunately, many
students find it difficult to learn. Even universities that can select from among the best students report
difficulties in teaching Java. Thus Jenkins and Davey (2001) state:

Anyone who has presented an introductory programming module will be all too familiar with
students who appear to be totally unable to grasp the basic concepts. Others who come to
supervise final year dissertations will have been faced with students who insist that they want to
avoid programming at all costs.

To tackle this problem the School of Informatics and Multimedia Technology at the University of North
London instituted a project beginning in Spring 2002 to substantially improve the learning experience for
first year students of programming. In August this became part of the Department of Computing in the
new merged institution: London Metropolitan University. The study involves a large group of nearly 400
students. The project involves intervention in syllabus development, the social organization of learning
and the introduction of new eLearning materials. The eLearning resources are being based on the
authoring of rich, reusable learning objects. This development provides the focus for the present
discussion.

The university is a partner site in the UK LTSN National Subject Centre for the Information and
Computing Sciences. This Centre is funded by the four UK national higher education funding councils to
provide advice and support in teaching and learning to all higher education departments in the UK in
Computing and Library and Information Science (http://www.ics.ltsn.ac.uk). The present project is
acting as the preliminary step in exploring the potential of setting up a national repository of learning
objects for introductory programming. The learning objects are being developed both to meet immediate
pedagogical needs and to serve this larger goal. This produces extra pressure initially. However, it
provides the potential to divide the eventual task among a number of contributing partners, exploiting
considerable advantages of scale.

This initial discussion concerned identifying a structure for learning objects on the Web. This project is
dealing with a real and urgent problem. The learning objects had to be developed and used within a tight
time frame. The main set of learning objects had to be delivered by late September 2002. It was planned
that refinements to the learning object structure could then be implemented based on feedback from real
evaluation data.

The main design requirements for learning objects may be summarized as follows. Each learning object
should be based on one clear learning goal. From a software engineering perspective each learning object
should be as cohesive and de-coupled as possible. This greatly facilitates re-use and re-purposing. From a
pedagogical perspective, however, there is the need to create an overall coherent learning experience.
These design challenges may be in conflict. A key challenge for the project is to resolve the tensions in a
creative and productive way.

Compound objects

 The software engineering principles imply that learning object should be as simple as possible. This
greatly aids recombination and reuse. However, such simple objects may well appear pedagogically
unexciting. Swan (1994), for example, argues that providing multiple perspectives aids learning. The
multimedia resources available for the Web certainly enable the creation of rich, alternative ways of
viewing and traversing a given learning topic. How can the use of these powerful techniques be squared
with ‘simple’ learning objects?

One solution adopted is the creation of compound learning objects. In language a compound sentence is a
sentence that consists of several independent clauses – ‘I went to New Zealand and I attended
ASCILITE’. Each clause can stand on its own as an independent entity. (These sentences may be
contrasted with complex sentences which contain bound or dependent clauses - 'I went to New Zealand
because …’).

A learning object may be thus simple, consisting of one independent object, or it may be compound. A
compound object consists of two or more independent learning objects that are linked to create the
compound. There are two main advantages of compound objects:

 1. They provide pedagogical richness not available through simple objects.
 2. They provide a significant basis for re-purposing.

A further important feature is that each simple component object can be reused independently.

Compound objects support alternative views of the same learning issue, e.g. as a text-based explanation
or as a multimedia animation. They thus provide a basis for pedagogical richness that fully exploits the
opportunities offered by the technology. It provides a basis for repurposing through the addition or
deletion of objects to amplify or shape the pedagogical richness of the compound object. Local tutors may
be presented with a default compound, but they should be able to reconfigure this to shape their own
compound object.

This concept is being implemented in the Introductory Programming project at London Metropolitan
University. These learning objects are being developed to meet an urgent practical need. The structure
developed thus represents one presentation format for compound learning objects. This presentation
format treats the textual explanation, expressed succinctly on a Web page, as the basic entry point into the
compound.

Example of a compound object

Computer languages can be decomposed into basic building blocks. Each building block may be
associated with solving a recurrent problem in writing computer programs. The 'learning objects' are
based on these basic components. Each compound object consists of a web page consisting of two main
parts. The first part is a succinct textual explanation (Figure 1). This can operate as an independent
learning object. The second part is the 'link' column. This provides links to other objects (often
multimedia objects) that amplify the learning experience offered by the compound object. Each of these

linked objects is structured so that it can be used independently of the text-based object. This is laid out
schematically in Figure 1.

Figure 1 Schematic layout of format for learning object realization

The structure of this layout is very simple but also very flexible. It implements a basic design pattern for
multimedia (Lyardet, Ross & Scwabe, 1998). The purpose of this design pattern is to manage the
bindings between one object and others. If we are to have cohesive and relatively decoupled learning
objects then we must have a design mechanism for managing these bindings. There are two main types of
binding: navigational bindings through URLs and non-URL based content bindings. This design pattern
deals with the issue of URL based bindings.

The primary design feature is that the URLs must not be mixed in with content. They must be kept and
managed on a distinct area of the screen. A further requirement added here is that the text must not
explicitly refer to the URL or vice-versa. This produces minimal explicit bindings between the main
content and the URL links. The URLs can be added to, subtracted from, or modified without affecting the
core object structure.

This provides an important mechanism for 'repurposing'. A learning object consists of a core and zero of
more expansions. A default object is presented with the core with certain expansions added. These
expansions aim to provide added pedagogical value to help in attaining the learning objective. However,
as the couplings are precise, locatable and minimized, it provides a basis for changing the objects to meet
specialist or evolving needs. These objects can be repurposed through the addition, subtraction or
modification of extra resources. This approach provides a basis for the development of rich, adaptable
learning objects through the management of the coupling relationship within a compound learning object.

Illustration of an adaptable, compound learning object

Appendix 1 provides an illustration of a learning object developed using this format. The learning
objective is to enable students to comprehend, and use in simple programs, the Java code for instantiating
objects from classes (this is the basic technique for the reuse of software in Java). The core of the object
contains a succinct text description providing example code and an explanation of the Java constructs. It
aims to do this in language appropriate to a learner, and thus introduces the technical terms in a 'Jargon'
section at the end.

This object has a number of expansions (Appendix 1). There is no compulsion on a student to use these.
A student who has experience of other programming languages may find that this textual explanation
suffices. A novice student may prefer to work through all the expansions available. One of the expansions
provides a Java applet that provides sample code in a full applet and executes the sample code. This is
accessed through the expansion point labeled 'run applet'. A further resource is provided by a Flash based
interactive movie that gives an animated illustration of the instantiation of an object. This resource is

Link column

Banner

Expansion
links to other
resources

Explanation and
text-based
examples

accessed through the slot 'run animated explanation' (Appendix 1). A screen dump from this animation is
given in Figure 2. The animation culminates in a simple game where the student can select individual
'words' and construct the appropriate Java code. The aim of this resource is to provide an attractive
resource that amplifies the pedagogical richness of the learning object.

The animated resource, of course, is a learning object in its own right. It is self-contained. So although it
is used to provide an enriched extension to the text object here, it is not bound. It could be used on its
own, in a lecture, for example to illustrate the underlying concepts. It is important for reusability that the
resources also act as independent reusable objects. The fact that it is an independent object also has
advantages at the authoring stage. The development of the text object and ‘expansion’ objects can
proceed in parallel.

Figure 2: Screenshot from the animated explanation of instantiating objects

Learning objects and course structure

There is a further, and more obvious, dimension to decoupling. This concerns the relationship between
learning objects and the syllabus, course or other higher organizing structure in which they are delivered.
Learning objects should not be coupled/ bound into particular course structures. In terms of Web based
implementation this means that the syllabus navigation structure operates at a different layer of
organization for the learning object resources (which can be reused in different syllabus structures). The
‘syllabus’ navigation panel should be held as a separate object (Figure 3). The syllabus can thus be re-
purposed easily by the addition, subtraction or re-ordering of links in the main syllabus/navigation
‘menu’. The only link from the syllabus to a particular learning object should be one URL. The learning
objects are thus as decoupled from a particular syllabus as possible. The local tutor should thus be able to
repurpose the syllabus and/or the learning objects.

Many different syllabi may be created to meet different needs, e.g. university courses or short courses for
industry. This syllabi object operates at a different layer from that of main content objects (Boyle 2001,

Boyle & Cook, 2001). The layers thus provide different levels of organization, and the links between
objects at different layers should be as clear and controlled as possible.

Figure 3 Schematic representation of a syllabus structure

Ongoing development work and future

The paper has set out a series of design principles for the design and authoring of learning objects. The
central challenge is to design for reuse and repurposing. These principles have been illustrated with
learning objects developed for a project to improve the learning of Java. This project is addressing a
number of ongoing challenges in achieving maximized decoupling of the learning objects.

These eLearning resources are being used with a cohort of over 400 students in semester A 2002
(beginning in mid September 2002). It is not enough that these object satisfy formal criteria of cohesion
and decoupling; they must also be effective pedagogically. A Research Fellow has been appointed who
will carry out a detailed evaluation of the impact on learning and student acceptance. It is intended that
this evaluation should provide information directly on the pedagogic value of individual learning objects.

A further stage of development is to use these quality assured objects as the 'seedcorn' for a national
repository of learning object managed through the UK LTSN National Subject Centre for Information and
Computer Sciences. This initiative would support the parallel development and exchange of learning
objects at different higher education centres. The full advantages of cohesive, reusable learning objects
can only be achieved by creating communities that develop and exchange learning objects.

References

Boyle, T. (2001) Towards a theoretical base for educational multimedia design. JIME, Journal of

Interactive Media in Education. Available online at:
http://www-jime.open.ac.uk/2001/boyle/boyle.html

Boyle, T. & Cook, J. (2001) Towards a pedagogically sound basis for learning object portability and re-
use. In Kennedy G., Keppell M., McNaught C. and Petrovic T (2001) Proceedings of ASCILITE 2001,
101-109. Available online at: http://www.medfac.unimelb.edu.au/ascilite2001/pdf/papers/boylet.pdf

Calverley, G. (2002) Distributed Learning Project Guide: Creating Reusable Materials.
http://www.cetis.ac.uk/groups/20010809144711/FR20020618103339 [1st Oct 2002]

Duval, E. (2001) Standardized metadata for education: a status report. In Montgomerie C. and Jarmo V.
(eds.) Ed-Media 2001, World Conference on Educational Multimedia and Hypermedia. AACE, pp.
458-463.

Grabinger, R. S. & Dunlop, J. C. (1995) Rich environments for active learning: a definition. ALT-J, 3(2),
5-34.

Jenkins, T. & Davy, J. (2001) Diversity and motivation in introductory programming. Italics, 1(1),
http://www.ics.ltsn.ac.uk/pub/italics/issue1/tjenkins/003.html [1st Oct 2002]

Koppi, T. & Hodgson, L. (2001) Universitas 21 learning resource catalogue using IMS metadata and a
new classification of learning objects. In Montgomerie C. and Jarmo V. (eds.) Ed-Media 2001, World
Conference on Educational Multimedia and Hypermedia. AACE, pp.998-1001.

IEEE. (2002) Draft Standard for Learning Object Metadata.
Available:http://ltsc.ieee.org/doc/wg12/LOM_WD6_4.pdf, [4 March 2002]

LTSN-ICS (2002) The LTSC-ICS Website. Available at: http://www.ics.ltsn.ac.uk/ [1st Oct 2002]

 Syllabus
Links to learning objects

Lyardet, F., Ross, G. & Scwabe, D. (1998) Using design patterns in educational multimedia applications.
In T. Ottmann and I. Tomek (eds.) Ed Media and Ed Telecom ‘98. Procs. of the 10th World
Conference on Educational Multimedia and Hypermedia. AACE.

Pressman, R. S. & Ince, D. (2000) Software engineering: a practitioner's approach. 5th ed. - European
edition. McGraw-Hill.

RHA Associates. (2002) SCORM overview. Available: http://www.rhassociates.com/scorm.htm [1st Oct
2002]

SCORM (2002) See ADL Website – http://www.adlnet.org/ [1st Oct 2002]
Sommerville, I. (2000) Software engineering, 6th Ed. Addison-Wesley
Swan, K. (1994) History, hypermedia and criss-crossed conceptual landscapes. Journal of Educational

Multimedia and Hypermedia, 3(2), 120-139.

Acknowledgements

The author would like to acknowledge the contribution of Richard Haynes from the Teaching and
Learning Technology Centre, London Metropolitan University, who carried out the Flash authoring of the
illustration provided in Figure 2.

Appendix 1: Example - Creating software objects from class templates

Creating software objects from class templates

 Problem
 In Object Oriented programming we need to create objects from class templates.

How is this done in Java?

 Example code
 RectangleClass myRectangleObject;

 myRectangleObject = new RectangleClass ();
! Run applet

 Explanation
 In Java creating a new object is achieved in two steps:

Step 1: give the object a name and indicate which class it belongs to
as follows:

RectangleClass myRectangleObject;

↑
 class name object name

This line first states the name of the class to be used - RectangleClass. It then gives
(in computing jargon - 'it declares') the name of the new object - myRectangleObject.

Step 2: use the new statement to create a new copy (instance) of the class

myRectangleObject = new RectangleClass;
 ↑ ↑ ↑
 object name command class

This can be read as create myRectangleObject as a new object of the class
RectangleClass. This command produces one instance (copy) of the class in the
computer's memory. We can now manipulate that software object (e.g. change the
size, colour or position of the object)

! Run

animated
explanation

 Jargon
 When we give the name of object - we declare the name of the object.

When we create a new object from a class template - we instantiate the class (i.e.
create an instance of the class)

Copyright  2002 Tom Boyle.

The author(s) assign to ASCILITE and educational non-profit institutions a non-exclusive licence to use this document
for personal use and in courses of instruction provided that the article is used in full and this copyright statement is
reproduced. The author(s) also grant a non-exclusive licence to ASCILITE to publish this document in full on the World
Wide Web (prime sites and mirrors) and in printed form within the ASCILITE 2002 conference proceedings. Any other
usage is prohibited without the express permission of the author(s).

