
ASCILITE ’98 373

Software Development Teams in Higher Education: An Educator’s View

SOFTWARE DEVELOPMENT TEAMS IN HIGHER
EDUCATION: AN EDUCATOR’S VIEW

David M. Kennedy

Multimedia Education Unit, The University of Melbourne, Australia.
email: d.kennedy@meu.unimelb.edu.au

ABSTRACT

The development of computer-facilitated learning (CFL) for higher education has grown substantially
in recent years. The complexity of modern CFL development has resulted in the need to form teams of
people with a range of skills – academics for content knowledge, graphic and interface designers for
the human computer interface design, programmers for coding, educational designers who focus on
pedagogical issues of teaching and learning, and a project manager to coordinate resources, budgets
and time lines of the development process. Each member of the project team brings skills and professional
knowledge to the group.

In the development of courseware, there are a number of different software engineering models to
choose from. Each model is shaped by an underlying set of assumptions about the nature of knowledge
acquisition (learning), the most appropriate methodology to achieve a quality outcome, the role of the
teacher in the use of the courseware, and a view of the context into which the courseware will be
implemented.

In this paper, the pedagogical assumptions that underpin five models of software engineering are
examined. The majority of programmers are trained in the Linear Sequential Model (LSM) of software
design. This model is closely aligned to a linear instructionist model of instructional design and may
create conflicts when a programmer is working with an educational designer who is using a constructivist
approach. There are other models of software engineering more closely aligned to constructivist
approaches but these are less frequently used in the design of courseware in higher education. These
issues will be addressed by reference to a number of courseware projects.

KEY WORDS

Software development, software engineering, constructivist pedagogy, software specifications.

1 INTRODUCTION

The development of academic courses that use new computer-based technologies in higher
education has increased markedly in recent times. The use of computer-facilitated learning
(CFL), including Web-based courses in academia is increasing because the nature of higher
education itself is changing. Students with more diverse academic backgrounds, interests, and
motivation now undertake tertiary studies. The times when an early adopter (enthusiast) could
design, develop, implement and evaluate CFL courseware as an individual have long passed
(if they ever really existed in the first place). The process of developing CFL courseware,
Web-based courses and using computer-mediated communications has now become an
institutional point of focus rather than merely the domain of enthusiasts and innovators. As
CFL software has moved from the fringes of higher education to being core components of
course delivery, issues of software quality, student learning outcomes and integration of CFL

374

Kennedy

modules within the whole curriculum context have become paramount. This has necessitated
the formation of multi-disciplinary teams for software development. Ideally, such teams would
be composed of individuals with a range of specialist skills now needed to develop a large,
complex CFL project (Freeman & Ryan, 1995). These include:

• experience in teaching and educational design (Kennedy & McNaught, 1997);

• video and audio skills;

• programming skills;

• extensive knowledge of the content domain;

• interface and graphical design;

• formative and summative evaluation (Alexander & Hedberg, 1994); and

• project management (Phillips, 1997).

Difficulties arise because no individual has all of these skills and acquiring even a sub-set of
them requires considerable investments in time and effort. In any project a model of software
engineering will be used, implicitly or explicitly, to support the development of courseware by
the team. The questions to be addressed are:

1. What are the underlying pedagogical assumptions that shape models of software
engineering?

2. What models of SE best support current models of educational design of multimedia for
student learning.

The exploration of possible answers to these two questions may alleviate many potential sources
of frustration, misunderstanding and conflict in courseware development teams – delivering a
CFL product that enhances student learning in an acceptable timeframe.

2. THE CONSTRUCTIVIST VIEW

Any software developed for educational purposes in order to assist student learning must require
students to actively interact with new material in ways which require reflection. It is not sufficient
for students to understand an argument or explanation in a detached way. They need to make
decisions in their work which show clearly what their own knowledge constructions are. It is
my belief that CFL will only assist student learning when the tasks designed are based on the
constructivist principles. The principles of a constructivist perspective of teaching and learning
can be summarised as follows (McNaught, 1993).

• Students have prior well-formed frameworks of ideas about many of the topics they
study in science.

• Learners build up personal, internal conceptual maps as a result of interactive processes
between each learner and her or his environment.

• Our frameworks embrace our sociocultural environment as well as our physical
environment.

• Learning occurs as an active construction of meaning as a result of reflection on
experiences.

• ‘Reflection’ is one of those concepts which deserves to be reflected upon. It does not
just mean thinking over an experience, but implies a conscious integration of experience
into an existing framework.

• The process of reflection is not purely rational; motivation and interest are essential.

An interactive learning environment based on a constructivist perspective of teaching and
learning requires (Kennedy, Fritze, & McTigue, 1997):

• active student engagement in the construction of knowledge;

ASCILITE ’98 375

Software Development Teams in Higher Education: An Educator’s View

• the facility to allow for a variety of student inputs;

• provision for an iterative approach to learning; and

• provision for immediate and appropriate feedback.

Developing software with these characteristics requires early, ongoing and meaningful
evaluation of each iteration of the courseware with students. Hedberg & Alexander (1994)
have developed a model for formative and summative evaluation that addresses interface issues
and student learning outcomes in the development of interactive multimedia. They argue that
early formative evaluation with the target group will alleviate many potential design problems.
This is supported by Moonen & Schoenmaker (1992) who state that the interaction of the user
with the program is often very difficult to specify precisely and an early prototype “almost
always elicits comments and suggestions for alterations” (p.118). It is not too strong a statement
to say that formative evaluation is fundamental in courseware development if a quality product
is to be delivered (Burkhardt, 1992).

3. MODELS OF SOFTWARE ENGINEERING (SE)

Originally ... software engineering was approached as a linear activity
in which a series of sequential steps were applied in order to solve
problems. Yet, linear approaches to software development run counter
to the way in which most systems are actually built. In reality, complex
systems evolve iteratively, even incrementally. It is for this reason
that a large segment of the software engineering community is moving
toward evolutionary models of software development (Pressman,
1997, p. 832).

In an ideal project most participants would be software engineers
(Johnston, 1997).

These are two views offered of software engineering. The first is from a very popular textbook
on software engineering in its fourth edition, and the second reflects a view experienced by
students engaged in their final year of computer science. The first view is sympathetic to the
view adopted by a constructivist approach to the educational design of software – the second
view is, at best, naive.

Pressman (1997) lists the typical models for software engineering design as:

• Linear Sequential Model (the waterfall model);

• Prototyping Model;

• Rapid Application Development (RAD); and

• Evolutionary software process models – Incremental and Spiral.

These five models are representative of common approaches to software engineering. Other
modern models of software engineering (e.g., object-oriented technologies) may offer better
solutions in the future for the large courseware projects being developed in higher education
(Pressman, 1997). However, the five models have been selected because the expertise and
funding to implement them are generally available in higher education. The advantages and
disadvantages of each model in an educational context are described in a series of tables (Tables
2, 4, 5, 6, 7). Each table also has a summary of the major aspects of the model. Each of the
visual representations of a model has been adapted to reflect terminology familiar to educators
in an effort to clarify the model (for educators). For example, the six descriptors in the spiral
model (Table 7) have been replaced with expressions more familiar to an educator (Table 1).

376

Kennedy

Table 1

Descriptors for SE: An Educator’s Viewpoint

Original descriptor Educational descriptor

Customer communication Communication with lecturer: exit and entry point

Planning Evaluate alternatives, analyse curriculum context, student learning
outcomes

Risk analysis Planning and project management

Engineering Design of CFL learning environment (engineering) & resource
generation

Construction and release Prototyping of core components/ functional components (coding)

Customer evaluation Evaluation by students (formative followed by summative)

3.1 THE LINEAR SEQUENTIAL MODEL

The first model, the Linear Sequential Model or ‘waterfall model’ is the oldest and still the
most widely used (Pressman, 1997) – and the most problematic in an educational environment.
It is of interest to note that in a typical undergraduate software engineering course (at The
University of Melbourne at least), the LSM is still the dominant model used to illustrate the
software design approach in the final year software engineering projects (Arnold, Dart, Hassall,
& Johnston, 1997). Table 2 provides a summary of this model.

Table 2

The Linear Sequential Model

Model Advantages Disadvantages

Linear Sequential 1. Provides a template 1. Real projects are not developed in a
Model (actually a series of templates) linear fashion.
(‘waterfall’ model) into which methods of analysis, 2. Although an iterative process may be

design, coding, testing and accommodated, in a real project changes
maintenance can be placed. tend to cause confusion.
2. It is widely used by software 3. In educational projects it is often very
engineers (particularly in business difficult to state all requirements explicitly
applications) and well understood. as required by the model.
3. It is significantly better than an 4. The first working version of the project
ad-hoc or haphazard approach to will not be produced until late in the
software development and design. project time-span.

Major problems with students are therefore
only discovered after substantial efforts
have been invested in programming and
design.
5. The linear nature of the model creates
situations where delays in one part of the
project can ‘block’ the rest of the project
team fromproceeding.

Summary Linear Atomistic analyse delivery of
software productdesign code test

System/ information
engineering

(after Pressman, 1997, p. 31)

ASCILITE ’98 377

Software Development Teams in Higher Education: An Educator’s View

3.1.1 Two LSM projects

I am involved in the educational design in both projects. Project A is a large multimedia project
focused on producing an interactive CD-ROM. It is well funded (from internal and external
sources) and has access to team members with considerable levels of professional expertise
and experience. Detailed documentation has been produced. On the surface, (Table 3) Project
A appears to have all of the personnel with the requisite skills to succeed – that is, produce a
quality product in a specified time. After a year, students are yet to see a prototype. Project B
is a small, unfunded Web-based project. The project is part of the requirements for students
engaged in an undergraduate degree in Computer Science. In Project B the students are not
required to produce a product – the experience of software engineering in a ‘real’ situation is
the primary focus of the course lecturers. However, the students are very committed to achieving
a working prototype as well as completing all of the documentation required (on which they
are assessed). After seven months there are over 110 pages of highly detailed software
requirements for a concept untested in a ‘real’ educational environment – actual use by academics
and students. Table 3 summarises each of the projects.

Despite obvious differences, the two projects are remarkably similar in two respects – they are
both using the same model of software engineering, the Linear Sequential Model (LSM) and
members of both teams are committed to producing a quality product. The difficulties that
arise are that both:

• have yet to produce a viable product for evaluation with students;

• may require substantial revision after user evaluation; and

• will be difficult to alter because a great deal of effort has already been invested in the
programming.

Table 3

The Projects

Project Size of project Team composition

Project A A large (potentially) ongoing project in the Academic and general staff with the
biological sciences in a major university following professional expertise:
faculty undergoing considerable change to • graphic design,
the fundamental curriculum. • video and photography,

• image capture,
In the future, the project may ultimately be • software programming,
too large for one CD-ROM due to the number • educational knowledge,
and complexity of the multimedia elements. • project management,

• content knowledge, and
• discipline specific technical

skills.
Project B A small third year software engineering project The team consists of:

for students. The students are ‘contracted’ to an • an educationalist, and
academic client. The intention is to develop a • software engineering students
small Web-based cognitive tool. in their final year of computer

science.

378

Kennedy

3.1.2 The problems with the LSM approach

The major competing factors affecting the completion of the two projects are:

• the programmers are reluctant to undertake substantial programming until all of the
documentation is completed; and

• the educators and content experts are attempting to ‘second-guess’ problems likely to be
experienced by students in order to satisfy the documentation requirements of the first
group – without the opportunity to generate any formative student evaluation of the
software.

This process of ‘second-guessing’ results in a delay of the final documentation due to frequent
changes in the software design (by the content experts) as potential problems (imagined or
otherwise) are rectified – to produce a quality product. This has been the situation in both
projects (although more so in project A due to greater complexity). The overall results include:

• the delay of any recognisable product;

• frustration and angst for everyone involved; and

• a significant amount of coding will be done before any evaluation with either target
group.

The major problem with the extensive documentation (e.g., Software Quality Assurance Plan
(SQAP), Software Requirements Specification (SRS), Software Design Document (SDD) and
the Test Plan (TP)) required by the waterfall model of software engineering is that in an
educational project in which limited or no evaluation with students has been carried out ‘the
specification is difficult to test in any meaningful way, so inconsistencies or omissions may
pass unnoticed (Pressman, 1997, p. 293)’. The educator is forced to develop software with
minimal input from the end-user. Equally, it is unrealistic for programmers to have to cope
with frequent requests for modifications to the interface, functionality, or content of a project
from the content expert. It is clear from the experience of the two projects that the LSM is not
well suited for software development in higher education – from a programmer’s or an educator’s
perspective. An iterative, modular or component-based approach with significant student input
would be more effective.

3.2 THE PROTOTYPING MODEL

Table 4 provides an overview of the Prototyping model. Models of software engineering which
instigate earlier involvement with students (ie., support early formative evaluation) are more
likely to foster quality outcomes, and satisfy the requirements of programmer and educator.
This view is not universally supported. Alan Cooper (1994) the designer of Visual Basic claims
that ‘prototyping is programming and it is harder than concrete to change’. He claims
programmers don’t like to alter working code and the issues discussed in Table 2 (keeping
inappropriate programming structures) become problematic.

ASCILITE ’98 379

Software Development Teams in Higher Education: An Educator’s View

Table 4

The Prototyping Model

Model Advantages Disadvantages

Prototyping 1. It is very suitable for projects in 1. There is a danger of raising expectations.
Model which the specifications (e.g., the The time and effort required to develop a

form of the software that most stable, robust final form of the software may
enhances student learning) are not not be well understood by the academic
yet fully understood. developer.
2. The prototype becomes a mechanism 2. The software ‘fudges’ used to get a basic
for the expression of the software form of the prototype working quickly may
requirements to be incorporated in remain in the final product – compromising the
the final product. integrity of the software.
3. The potential users (students) have 3. There may be an unreasonable expectation
the opportunity to influence the form from the academic that the final product
the final product because evaluation is may be better than can be delivered within
initiated early in the design and budgetary and time constraints.
development of the software. 4. There may be a loss of team enthusiasm

due to the mistaken belief that the project is
almost complete and there is little need for
further input into the project.

Summary
Early prototupe
Students involved
Prototype informs
design

(after Pressman, 1997, p. 33)

However, Gunn (1995, p. 188) reported a conflicting view that highlights a major difference
between the business/ industrial environments in which most SE models were developed, and
higher education. In this study, what was initially a throw-away prototype was viewed so
positively by students and experts in the learning environment, it became the basis for further
development for specific use in tutorials. Clearly, a model with a prototyping component can
provide very useable software, and guide the design process in a meaningful way. However,
there needs to be some care in selecting projects which use this methodology.

3.3 THE RAPID APPLICATIONS DEVELOPMENT MODEL

Rushby (1997, p. 18) advocates the Rapid Applications Development (RAD) model of software
development as a more efficient method of software development in contrast to the traditional
waterfall process.

A major benefit is the early and continual involvement of end users
... (using the RAD approach) means that users have a real say in the
evolution of the package through its prototypes and are empowered
to suggest significant changes to structure, content and functionality.

Table 5 examines the RAD model. The RAD model is being used very successfully at the
Royal Melbourne Institute of Technology in the Faculty of Engineering to develop a series of
templates for courseware development (Kennedy, McNaught, & Nicolettou, 1998, In this
volume).

Build/ revise
prototype

Discuss general
software design in light

of desired learning
outcomes

Evaluate prototype/
product with students

Release
software

Add software
requirements/ respond
to student feedback

380

Kennedy

Table 5

The Rapid Applications Development Applications Development Model

Model Advantages Disadvantages

Rapid
Applications 1. The RAD model produces demonstrable 1. This model requires an approach
Development products quickly (typically 60 to 90 days). derived from re-useable components.
(RAD) model 2. The design and development of software 2. The scope of the project and the

proceeds incrementally – each componentspecific requirements must be constrained.
is evaluated with end users before being 3. The model has been used most for
added to the next iteration. information systems in business
3. There is early involvement of the end- applications.
users (students). 4. In larger projects there may be a

need for a set of development teams
operating concurrently.

Summary
Incremental
End users involved
Modular

(after Pressman, 1997, p. 38)

3.4 THE EVOLUTIONARY MODELS

The evolutionary models of software engineering (Incremental and Spiral, Table 6 and Table 7
respectively) have a framework that is iterative, involve the target group early, and have the
potential to be used in situations requiring rapid development. Both models represent
developmental scenarios more representative of the ‘real’ world. A model of software
development derived from the Incremental model has been used in the development of two
online tools, Learning Evaluation Online (LEO) (Kennedy & Ip, 1998) and the Text Analysis
Object (Kennedy, Ip, Eizenberg, & Adams, 1998, In this volume). In both the LEO and the
TAO projects, the core functionalities were devised using a scenario-based approach (Carroll,
1995). Initial formative evaluation with potential users (students and academic staff) was
achieved using focus groups (students) and individuals (staff) with either screen mock-ups or
descriptions of functionalities and what-would-you-do-if scenarios.

analyse
needs

delivery
of core

functionalities

design
core

Analyse educational
context: Engineer core and

other components

delivery
of secondary

functionalities

Phase 2: increase
functionalities

Time

code
core

evaluate
with Ss

analyse
Ss needs

design
functions

code extra
functions

evaluate
with Ss

Ss = students

ASCILITE ’98 381

Software Development Teams in Higher Education: An Educator’s View

Table 6

The Incremental Model

Model Advantages Disadvantages

Incremental 1. Combines the linear organisational 1. It may be difficult to pre-empt
model components of the LSM with the iterative what functional components

philosophy of prototyping. will be needed in the future.
2. It can produce a ‘useable’ product with Integration into a single
limited functionality quickly (the first coherent piece of software
and subsequent iterations add more functionality). may be difficult.
3. It focuses on delivering an operational product, 2. The scope of the project
with each iteration. and the specific requirements
4. Feedback and useability testing can suggest must be constrained.
improvements in functionality which add to, or 3. The model is most suitable
modify the core components. for systems that can be
5. There is early and on-going involvement delivered as a series of inter-
with the target group (students). operable components.
6. Increments can be planned to take advantage
of new hardware or software becoming available
(e.g., faster CD-ROM drives, of better video
compression software).

Summary
Modular
Iterative
Ordered
Involved with students
Early evaluation

(after Pressman, 1997, p. 36)

Model
T & L
context

Model
T & L

activities
Model

software
components

Generate
software

Evaluate
& use

Model
T & L
context

Model
T & L

activi ties
Model

software
components

Generate
software

Evaluate
& use

Model
T & L

context
Model
T & L

activities
Model

software
components

Generate
software

Evaluate
& use

Time

Each cycle is
60 to 90 days

cycle 1cycle 2cycle 3

382

Kennedy

Table 7

The Spiral Model

Model Advantages Disadvantages

Spiral model 1. Combines the iterative nature of 1. The model is relatively new and may
prototyping with the technical and not be well understood or explainable
systematic components of the LSM. to members of the software development
2. The model provides the potential team.
for rapid development of a first The software engineers may find the
prototype (a paper or a software version) model lacking in detail (levels of
which can then be evaluated by the target documentation), and the academic
group (students). members may not view the process
3. The (student) user has an opportunity as able to deliver useable results in an
for early evaluation of the software with acceptable time span.
the potential to provide valuable input to 2. The assessment of risk factors that
improve the quality of the software. prevent the project from delivering a
4. The model supports projects that are quality product in an acceptable time
intended to be implemented for a long is crucial – the project manager’s
time and require ongoing upgrading and knowledge and experience play a
adaptation to changing situations (as in critical role in determining potential
changes to higher education curricula). problems early in the development
5. The model is more suitable for large process.
projects – the iterative model employed is
more realistic of real-world applications.

Summary
Modular
Ordered
Involved with students
Early evaluation

(after Pressman, 1997, p. 40)

The functionalities (e.g., authoring interface, feedback to students, student interface) for each
tool were then described and a prototype with core functionalities constructed.

A second round of formative evaluation occurred, suggesting improvements to the interface
design and construction of additional functionalities in the next cycle of development. Both
projects have had very positive formative evaluations (in both rounds) and the time-line to
deliver the first prototype of each was measured in weeks. The early feedback from the users
has been vital in defining the core functionalities of both tools – while avoiding potentially
lengthy delays trying to second-guess the user perceptions.

4. DESIGNING CFL

 (As instructional designers) …we also need to recognise that we are
seriously behind our cognate fields in the incorporation of cognitive-
based instructional models, the change from ‘waterfall’ design
methodology to a rapid application development (RAD)-based, short
cycle time, iterative design methodology, and quality management.

(Forshay, 1997)

Design of CFL learning
environment (Engineering) &

resource generation

Prototyping of core
components/ functional
components (coding)

Evaluation by students
(formative followed by

summative) Communication with
lecturer (Client): entry

and exit point

Planning and
project management

1

2

3

4
Iterations

Evaluate alternatives,
analyse curriculum context,
student learning outcomes

ASCILITE ’98 383

Software Development Teams in Higher Education: An Educator’s View

The paradigms that people adopt for the development of educational multimedia reflect prior
knowledge and experience, the manner in which they were taught, and implicit (or explicit)
models of teaching and learning she or he has experienced in their own educational undertakings
(Bain & McNaught, 1996). The adage that ‘people teach as they were taught’ may be extended
to ‘people design educational multimedia based upon their experiences (and perceptions) of
teaching and learning’. In the literature of interactive multimedia development there has been
strong support for the use of a constructivist perspective on teaching and learning for more
effective instructional design in an educational context (Duffy & Jonassen, 1991). A
constructivist approach to software design requires formative evaluation in the design and
development phases. The formative evaluation may involve peer review, walk-through of a
rapid prototype, observation of target group using the software, user-tracking, and interviews
(individually or in focus groups) with potential users (after Hedberg & Alexander, 1994). The
student evaluations inform all aspects of the design including the user interface, navigation,
and how the software functionality supports student learning.

In software engineering the development of CFL is guided by a number of key stages which
attempt to make the software requirements unambiguous, consistent and complete. Each key
stage (in some models) is associated with extensive documentation intended to minimise
potential errors and maximise quality. On the surface this sounds very much like what the
educational designer wishes to accomplish – a quality product which enhances learning.
However, the underlying assumptions about knowledge and process that guide the five models
may be divided into two groups (Table 8). Table 8 is adapted from Reeves (1992b) pedagogical
dimensions of interactive learning systems to include thinking tools, methodologies, and
developments in software engineering models over time. The allocation of the particular software
engineering model is derived from reference to the literature and experience within the four
projects.

Table 8

Dimensions of Software Engineering Models (after Reeves, 1992a)

Dimension Early models of SE Later models of SE

Paradigm Instructionist Constructivist

Methodology Atomistic (divide-and-conquer) Holistic (curriculum context)

Underlying psychology Behavouralist Constructivist

Thinking tools (Flow diagrams, branched linear) Concept mapping
(hierarchical, interconnected layers)

Experiential value Concrete Abstract

Role of teacher Teacher proof Facilitator

Value of errors Error free Experience

Model of Software Linear Sequential Model Protoyping, Rapid Application
Engineering (waterfall model) Development, Incremental, and Spiral.

The models of software engineering that best support current approaches to educational design
of courseware are not the most commonly used (e.g., Project B) by students engaging in learning
computer science in higher education (clearly, this refers to courses at this institution).

By training, education, and experience many programmers are most familiar with the LSM or
‘waterfall’ model. In the LSM approach user testing occurs late in the lifetime of the project.
The use of prototypes is confined to debugging and interface issues rather than user perceptions

384

Kennedy

and formative evaluation as a mechanism for guiding design. There is an assumption that it is
possible to specify all elements, functionalities and interface issues in a particular piece of
courseware, prior to the commencement of programming. In an educational setting, this is
often not possible. Equally, an ad-hoc approach is also to be avoided. The documentation
should guide the development of courseware rather than stifle it. Input should be sought from
all stakeholders, academics, students, and educational designers prior to and during the
development of courseware. The examples provided in this paper of the use of the RAD and
Incremental models provide evidence of alternative approaches to developing courseware in
higher education – incrementally, with significant user input, and delivering quality outcomes.

Understanding the underlying assumptions of the model of software design chosen for a project
and communicating its underlying strengths and weaknesses to the design team early in the
life of the project will enhance the design process. Potential conflicts may be alleviated and
the strengths of the model used to promote quality outcomes. The project leader, manager, or
educational designer must take the initiative to communicate what issues have the potential to
cause conflict, the particular responsibilities of each member of the team, and why a software
engineering model will be used for a particular project.

The LSM approach has little to recommend it. The Prototyping, RAD, Incremental and Spiral
models all offer a pedagogical perspective of software design which are congruent with a
constructivist perspective of teaching and learning, and software development. These models
offer a framework to develop quality educational software on time and on budget, minimise
frustration and compromise, and facilitate meaningful input from all of the stakeholders
(academic staff, technical staff and students).

5. REFERENCES

Alexander, S., & Hedberg, J. (1994). Evaluating technology–based learning: Which model? In K. Beattie,
C. McNaught, & S. Wills (Eds.), Interactive multimedia in university education: Designing for
change in teaching and learning (Vol. A 59, pp. 233-244). Amsterdam: Elsevier B. V. (North Holland).

Arnold, T., Dart, P., Hassall, M., & Johnston, L. (1997). Software Engineering Project Manual: 433-
340 Software Engineering Project. The University of Melbourne: Department of Computer Science.

Bain, J., & McNaught, C. (1996). Academics’ educational conceptions and the design and impact of
computer software in higher education. In C. McBeath & R. Atkinson (Eds.), The learning
superhighway. New world? New worries? Proceedings of the Third International Interactive
Multimedia Symposium, (pp. 56-59). Perth, Western Australia: Promaco Conventions Pty Ltd.

Burkhardt, H. (1992). Classroom observation in courseware development. International Journal of
Educational Research, 17, 87-98.

Carroll, J., M. (1995). Introduction: The Scenario perspective on system development. In J. M. Carroll
(Ed.), Scenario-Based Design: Envisioning work and technology in system development (pp. 1-18).
New York: John Wiley and Sons, Inc.

Cooper, A. (1994). The Perils of Prototyping. Available: http://www.cooper.com/articles/
vbpj_perils_of_prototyping.html [1998, August 2].

Duffy, T. M., & Jonassen, D. H. (1991). Constructivism: New implications for instructional technology?
Educational Technology, 31: 5, 7-12.

Forshay, R. (1997, 23 Feb). CBT’s first generation: If we’re so smart, why ain’t we rich?, [Discussion
paper]. Instructional Technology Forum. Available: http://itech1.coe.uga.edu/ITForum/home.html
[1997, 23 Feb].

Freeman, H., & Ryan, S. (1995). Supporting the process of courseware development: From concept to
delivery. In H. Maurer (Ed.). ED–MEDIA 95. Proceedings of the World Conference on Educational
Multimedia and Hypermedia, (pp. 223-228). Graz, Austria: Association for the Advancement of
Computing in Education.

Gunn, C. (1995). Useability and beyond : Evaluating educational effectiveness of computer-based
learning. In G. Gibbs (Ed.), Improving student learning through assessment and evaluation (pp.
168-190). Oxford, England: Oxford Centre for Staff Development.

ASCILITE ’98 385

Software Development Teams in Higher Education: An Educator’s View

Hedberg, J., & Alexander, S. (1994). Implementation and evaluation: The forgotten end of interactive
multimedia development. In M. Ryan (Ed.). APITITE 94. Proceedings of the Asia Pacific Information
Technology in Training and Education Conference and Exhibition. Brisbane: APITITE 94 Council.

Johnston, L. (1997). Software Engineering 3A, 433-341: First Semester Handbook and Notes. The
University of Melbourne: Department of Computer Science.

Kennedy, D. M., Fritze, P., & McTigue, P. (1997). An interactive graphing tool: The meeting of pedagogy
and technology. In R. Kevill, R. Oliver, & R. Phillips (Eds), What works and why, ASCILITE’97.
Proceedings of the Australian Society for Computers in Learning in Tertiary Education Annual
Conference, (pp. 331-337). Curtin University of Technology, Perth: Academic Computing Services.

Kennedy, D. M., & Ip, A. (1998). Learning Evaluation On-line (LEO): A customisable Web-based
evaluation tool. In C. Alvegård (Ed.). CALISCE ’98. Proceedings of the Fourth International
Conference on Computer-aided Learning and Instruction in Science and Engineering, (pp. 255-
262). Chalmers University of Technology, Göteborg, Sweden: Chalmers University of Technology.

Kennedy, D. M., Ip, A., Eizenberg, N., & Adams, C. (1998, In this volume). The Text Analysis Object
(TAO): Engaging students in active learning on the web. In R. M. Corderoy (Ed.). FlexibilITy: The
next wave. Proceedings of the Australian Society for Computers in Learning in Tertiary Education
Annual Conference. University of Wollongong, Australia.

Kennedy, D. M., & McNaught, C. (1997). Design elements for interactive multimedia. Australian Journal
of Educational Technology, 13: 1, 1-22.

Kennedy, P., McNaught, C., & Nicolettou, A. (1998, In this volume). Flexible and AGILE. In R. M.
Corderoy (Ed.). FlexibilITy: The next wave? Proceedings of the Annual Conference of the Australasian
Society for Computers in Learning in Tertiary Education (ASCILITE). University of Wollongong,
Australia.

McNaught, C. (1993). Which science? Which language?, Science and Mathematics Education Papers
1993 (pp. 148-171). Hamilton: Centre for Science and Mathematics Education Research: University
of Waikato.

Moonen, J., & Schoenmaker, J. (1992). Evolution of courseware development methodology: Recent
issues. International Journal of Educational Research, 17, 109-121.

Phillips, R., A. (1997). A developer’s handbook to interactive multimedia: A practical guide for
educational applications. London: Kogan Page.

Pressman, R. S. (1997). Software engineering: A practitioner’s approach. (Fourth ed.). New York:
McGraw-Hill Companies Inc.

Reeves, T. (1992a). Effective dimensions of interactive learning systems. In A. Holzl & D. Robb (Eds.),
Finding the future: ITTE ’92. Proceedings of the Information Technology for Training and Education
Conference, (pp. 99-113). Lucia, Brisbane: University of Queensland.

Reeves, T. C. (1992b). Evaluation of interactive multimedia. Educational Technology, 32:5, 47-53.

Rushby, N. J. (1997). Quality criteria for multimedia. Association for Learning Technology Journal, 5:
2, 18-30.

© David M. Kennedy

The author(s) assign to ASCILITE and educational and non-profit institutions a non-exclusive licence
to use this document for personal use and in courses of instruction provided that the article is used in
full and this copyright statement is reproduced.

The author(s) also grant a non-exclusive licence to ASCILITE to publish this document in full on the
World Wide Web (prime sites and mirrors) and in printed form within the ASCILITE98 Conference
Proceedings. Any other usage is prohibited without the express permission of the author(s).

386

Kennedy

