
ASCILITE ’98 357

Keep the Web Server Cool: A Proposal for Server-Side Object Development for Online Courses

KEEP THE WEB SERVER COOL:
A PROPOSAL FOR SERVER-SIDE OBJECT DEVELOPMENT

FOR ONLINE COURSES

Gangmeng Ji, Albert Ip, Ric Canale and Paul Fritze

Multimedia Education Unit, University of Melbourne, Australia.
email: g.ji@meu.unimelb.edu.au

http://www.meu.unimelb.edu.au/meu/staff/Ji.shtml

email: a.ip@meu.unimelb.edu.au
http://www.eddy.meu.unimelb.edu.au/albert/

email: r.canale@meu.unimelb.edu.au
http://www.meu.unimelb.edu.au/meu/staff/Canale.html

email: p.fritze@meu.unimelb.edu.au
http://www.meu.unimelb.edu.au/meu/staff/Fritze.html

ABSTRACT

This paper introduces a framework called the COOL framework for developing server-side software
components or complete systems for online courses. The framework has been designed to eliminate the
limitations facing the integration of commercial web-based course delivery software and in-house
pedagogical innovations on the server end. With the adoption of the framework, complete server systems
can allow third-party software components to be incorporated into and pedagogical innovations can
be re-used to their full potential. The COOL framework provides a middle layer ‘wrapper’ that exposes
the server-side components as URLs, which can be accessible to any web delivery system. The framework
is being adopted in a number of projects.

KEY WORDS

Online education, course delivery system, development framework, technology in education,
Internet and education, web delivery system, distance learning.

1. BACKGROUND

Along with widespread use of the Internet, particularly the web, the education sector has been
quick to adopt this evolving and challenging technology for the purposes of teaching and
learning. Some universities, like the University of Melbourne, see Internet technology as a
significant part of their strategy for maintaining and extending the quality of their educational
programs into the future, as an opportunity for restructuring their curricula, and as a chance
for adopting flexible approaches to teaching and learning. The growth of interest in online
course delivery has created a demand for online course delivery systems. In fact, both the
commercial solution providers and educational institutions have seized on the opportunity to
develop online course delivery systems. There are, however, significant differences between
these two streams for utilizing the online technology. The former intends to develop generic
and cross discipline online systems for delivering courses comprising course material and

358

Ji, Ip, Canale and Fritze

resource management, student management, and student tracking utilities, web conferencing,
threaded discussion forums, and bulletin boards. Those complete systems are often expensive
to develop and maintain. They are beyond the capabilities of the typical in-house developments
of all but a few educational institutions. On the other hand, many educators are more interested
in using Internet technology to visualize their pedagogical innovations. Their interests are
often based on projects, which represent an amalgam of institutional, departmental and individual
understandings of educational issues (Fritze & McTigue, 1997). Conversely, this side of
development for online courses is often beyond the grasp of commercial solutions as it is
closely tied to localized educational needs. Those pedagogical innovations may require rich
interactive learning activities. Some are generic objects across disciplines and others are highly
customized for localized learning requirements.

The two perspectives of online course development coexist but usually one perspective will
dominate in any particular course or project. Full integration of the two perspectives into the
one course can be very difficult or impossible. The off-the-shelf commercial products are
often self-contained and impenetrable packages. Their components can not be taken apart and
do not allow themselves to be replaced or used in other applications. There is understandable
commercial interest in packaging products in a way that they are self-contained and
impenetrable. However, software of this nature will maximize its benefit to educational
institutions only if it allows educationally motivated innovations to be added. On the other
hand, the in-house pedagogical innovations are commonly developed in an ad hoc fashion.
They often function only within specific systems or specific educational contexts and hence
can not effectively be re-used. Ways should be sought to maximize their re-use. Technically,
there are two aspects to implementing in-house pedagogical innovations, namely client-side
development and server-side development. Effective client-side development of pedagogical
solutions has been addressed in the literature (Ip et al, 1997; Fritze & McTigue, 1997). This
paper focuses on the server-side implementation of pedagogical innovations though they are
eventually materialized on the client-side web pages.

Closed systems, whether ‘home grown’ or acquired commercially, limit educational creativity
since the products do not allow innovative solutions to be added except perhaps by the originators
themselves. This observation came out of a systems review project called EdWebEval (http://
www2.meu.unimelb.edu.au/EdWebEval). The project evaluates the major current Web delivery
systems including Topclass (http://www.wbtsystems.com), WebCT (http://homebrew.cs.ubc.ca/
webct), and Virtual U (http://virtual-u.cs.sfu.ca). It has been found that pedagogically innovative
server-side tools such as the Text Analysis Object TAO, the Learning Evaluation Online LEO,
the html document annotation tool ANN, the Question Plus Qplus (http://
www2.meu.unimelb.edu.au/oxygen/tools), and the email forwarder MailTo (http://
www2.meu.unimelb.edu.au/le/about3/support/Lecontact.html) are difficult or impossible to
incorporate into the server systems being reviewed. Since the evaluation was carried out, two
notable new commercial offerings have appeared – WebMentor (released by Avilar in January
1998, http://www.avilar.com), and MelbourneIT Creator (released by MelbourneIT in August,
1998, http://www.melbourneit.com.au). WebMentor is fully compatible with the framework
proposed in this paper. At the time of writing, MelbourneIT Creator has not been trialled by the
authors, however it appears to be a very capable and promising product.

This paper proposes a solution called COOL (Component-based Object Library). The proposal
is a framework for server-side development of online course systems, which will cater for
appropriately designed commercial solutions and in-house innovations. The COOL framework
fits into a global architecture that includes the frameworks of server and client side development.
This architecture is the subject of on-going development at the Multimedia Education Unit.
The paper describes the development of server-side components within the global architecture.

ASCILITE ’98 359

Keep the Web Server Cool: A Proposal for Server-Side Object Development for Online Courses

2. PRINCIPLES OF THE COOL FRAMEWORK

The COOL is more than just a library of objects developed for the server systems. It is a
framework for the development of re-usable server-side components or complete server systems
with the aim to:

• adopt a component-based technical design for software;

• design with re-usability in mind;

• use or provide a ‘pluggable’ architecture;

• provide access to components cross-platform; and

• comply with relevant international standards.

2.1 COMPONENT-BASED

The first principle is that the development of Web systems should be component-based. The
idea of component-based design originates from the method of block design developed by
Ericsson, a Swedish telecommunications company, in the1960s. It has been widely adopted
not only in telecommunications but also in other software development areas (Jacobson et al,
1996). This design principle forms the basis of software re-use. The component is a high-level
module or block of a complex system, which contains a public interface. The public interface
is formally documented and exposes its functions to the outside world. The public interface
makes the software component re-usable. The component-based approach to server-side
development has to some extent been ignored because many institutions rely on off-the-shelf
products which they believe will provide the required systems for delivering their web courses.
This assumption will stop any innovative thinking on how these systems will be developed
though it has been argued that component-based courseware development will benefit the
institutions tremendously (Ip et al, 1997). Moreover, the component-based approach makes
the complex educational issues more manageable and deliverable. It especially suits the research
and development practices of educators wishing to develop innovative pedagogies.

2.2 RE-USABLE

This principle defines how advantage can be taken of the component-based principle, which
of itself does not guarantee that the components can be re-used. It is often found that software
components can only be used for a specific application. The component-based principle is
often practiced to reduce the complexity of a system under development. Software components
should be developed with a vision to re-use them in a variety of applications. For example, an
email forwarder called MailTo was developed initially for an on-line slide ordering system
(http://www.meu.unimelb.edu.au/sectionWebsites/photo/pics.html). However, the author chose
to implement it in a way that it can be used for systems other than the slide ordering system. It
can be used in a course delivery system for students to send queries about certain topics anywhere
without using any personal email applications (http://www2.meu.unimelb.edu.au/le/ about8/
Support/LEcontact.html).

2.3 PLUGGABLE

This principle extends the re-usability of server-side software components. Component-based
software design and implementation may not result in software modules that are easy to use or
that can be used in a number of applications. Being pluggable means the software components
are developed with a vision to be generic and to be widely used. Their public interfaces should
be implemented using certain standards and be well documented. They are not developed just
for one specific system. They should be developed in a way that any system can easily ‘hook’
them. This requirement creates a challenge for the commercial products, as most products tend
to be self-contained. It is generally accepted that the intellectual property of a product or
software component can be protected by making the technology proprietary but proprietary
technology does not exclude being pluggable. It does require greater care to observe international

360

Ji, Ip, Canale and Fritze

standards and perhaps a change in business culture. If software components are pluggable,
then the systems they become part of can be easily enhanced because the complexity of building
the systems has been reduced.

Being pluggable also means software products or components can allow other software
components to be part of them or to interface with them. For instance, a student administration
system should allow any course delivery system to send student scores to it and take the results
received as part of the student academic record.

2.4 CROSS-PLATFORM ACCESSIBLE

The principle of being cross-platform accessible further extends the re-usability of server-side
software components. Often server-side components either freely downloaded via the Internet
or developed for some projects are for specific platforms. Duplicating them on different
platforms is often totally unnecessary and a waste of effort. Those components either in the
form of a Java bean or Microsoft Com object can be wrapped and exposed as a URL which can
be used by any course delivery system. The MailTo server-side utility mentioned above is
actually a URL, which was built on top of a Java bean called JavaEmailer for the platform of
Windows NT.

2.5 STANDARDS COMPLIANT

The last but not least principle defines the communication protocol between the server-side
components. The communication protocol describes the formats of messages passed between
the components. This requirement will facilitate the global adoption of the proposed framework
for the development of server-side software components. Both the XML and the URL encoding
mechanism are what is proposed by this framework. With the formats defined, the configurations
of a server component and results to be returned can be understood by any participating
component.

3. SPECIFICATION OF THE COOL FRAMEWORK

With the five principles, the framework for server-side development is implemented as shown
in Figure 1. The COOL framework consists of three layers. On the bottom of the framework
are the platform-dependent low-level software components developed with a variety of
technologies including Microsoft COM and DCOM, Java, and CORBA. They are often difficult
to be re-used by applications of operating systems other than the systems they sit in. They need
to be wrapped in a way that they can be used to their full potential, which is what the middle
layer is expected to achieve.

The middle layer of the COOL framework packages the platform-dependent software
components in a way that are easy to be accessed by server-side web applications or software
components. The packaging or wrapping can be implemented using a variety of technologies
so far available. The predominant technologies include Microsoft Active Server Pages (ASP),
Perl, and CGI. These technologies extend the public interfaces of the software components of
the bottom layer and make them easily accessible.

The top layer is what the server-side components present themselves to the outside world. This
is a layer that exposes the server-side components as URLs. Exposing server-side components
as URLs makes them accessible to any web delivery system. They can easily work with client-
side objects (i.e. Shockwave, Applets, and Scriptlets) hosted by web browsers.

ASCILITE ’98 361

Keep the Web Server Cool: A Proposal for Server-Side Object Development for Online Courses

ActiveX

Java applets

URL

ASP, Perl, CGI, …

MS Com CORBA OtherJava

A global architecture

Shockwave

Client side objects

Figure 1: The COOL framework operates within a global architecture that
connects both server-side and client-side components

As implied in the fifth principle of the COOL framework, the format of messages is critical for
components to communicate with each other. Using URLs alone cannot deliver a total solution.
Messaging among components must be in a globally accepted format. The current formats are
the XML and the URL encoding mechanism. The exact details for specifying the formats of
messages using XML and the URL encoding mechanism are part of the ongoing project at the
Unit. They are going to be resolved by the specification of a global architecture.

4. ADOPTION OF THE COOL FRAMEWORK

A number of server-side software components or objects have been developed in the Unit for
specific projects. The majority of these COOL components is generic and can be used in a
number of scenarios. Examples of these components are ANN, Qplus, Text Analysis Object,
MailTo, MCQ Builder, ClozeBuilder, and GlossConverter. Those examples are listed in the
following mainly to illustrate that there is an ongoing need for pedagogical innovations and
how the COOL framework has been adopted. The technical implementation of each software
component is beyond the scope of this paper. It is important to point out the difference between
how these COOL components are used with open course delivery systems and how they are
used with closed course delivery systems. The COOL components can be used with close
systems, but it is often found necessary to replicate the functions and data storage already with
the systems. On the other hand, the COOL components can be integrated into open course
delivery systems. These systems are built with open architectures. There is no need to replicate
any functions and data storage since they are accessible to the COOL components.

4.1 WEBMENTOR

WebMentor is a commercial web delivery system for online courses with an open architecture
developed by Avilar (http://www.avilar.com) in early 1998. This course delivery system is so
far the only one evaluated by the authors in the market that is open for customization and
allows easy addition of third-party software components. This product has been bought for a
major on-line course in Chinese described below. We have been able to add all of the pedagogical
innovations requiring server-side software components and integrate them with this
comprehensive online course delivery system. Examples will be provided in the following
section. The user interface, navigation engine, its system functions, and its back-end databases
are open for customization. WebMentor itself has been implemented using an XML-like tagging
system, which leaves room for future enhancement and extension. A technical example for
illustration is the specification of attributes of a course (Figure 2).

362

Ji, Ip, Canale and Fritze

[COURSE name = "EXAMPLE" title = "Example Course Title"]
This is a sample description of the example course. This course is to
teach …
[COPYRIGHT name = "Your Institution" year = "1998"]
©1998 Your Institution. All Rights Reserved.

[/COPYRIGHT]
[AUTHOR name = "Your Name"
email="YourEmail@YourDomain.com"]
Provide a brief bio about yourself.
[/AUTHOR]
[/COURSE]

Figure 2: XML-like tagging system in WebMentor

4.2 BRIDGES TO CHINA.

Bridges to China is a project for NALSAS (National Asian Language Studies in Australian
Schools), which is funded by the Commonwealth government. This is a project for developing
an online course for teaching the Chinese language to the Australian teachers in the schools.
The project is challenging for a number of reasons. First, the course will be delivered cross-
platform. It is expected to run on both Macintosh and IBM-compatible PCs. Since this project
is language specific, it requires the course delivery system to be adaptive to the client platform.
For example, the Chinese character representation varies from platform to platform. Only
systems with open architectures can provide a satisfactory solution to this problem. An open
architecture has allowed the development of a number of generic pedagogical innovations to
come from this project. Finally, streamlining the authoring process of interactive web pages is
greatly facilitated by the open architecture. The development of both these pedagogical
innovations and page authoring utilities follows the COOL frameworks. Most of the COOL
components can either be used by or integrated into other web delivery systems.

4.3 ANN

ANN (Figure 3) is a tool that allows readers to annotate presented html pages. The readers'
annotations are stored in a database, which is separate from the annotated documents. The
annotations become accessible to any reader of these documents or pages (http://www2.meu.
unimelb.edu.au/oxygen/tools). This tool is quite generic and can be used in a number of
educational contexts. The tool was developed initially for a high school subject where many
poems were put up on line as html pages. With this tool, the students and teachers can comment
on the online poems, which turns the web site into a valuable resource for poems.

This annotation tool qualifies as a COOL component (a server-side software component whose
implementation follows the COOL framework). It is accessible to any web delivery system
although ANN can be best integrated into those course delivery systems with open architectures
because open systems like WebMentor are implemented using industry-standard database engines.

Figure 3: ANN – a COOL component that provides online annotation

ASCILITE ’98 363

Keep the Web Server Cool: A Proposal for Server-Side Object Development for Online Courses

4.4 QPLUS

Question Plus (Figure 4) extends the functionality of ANN. In QPlus, a question is presented
to students. As submissions are made by different students, they are made accessible, but only
to others who have already submitted an answer. QPlus is particularly suitable for use in distance
education and it is used extensively in the Bridges to China project. It is used in this project to
set the scene for discussion activities amongst Chinese language learners. In other words, the
students start with the initial submission to QPlus. Following these initial, unprompted
submissions, the discussion is then developed using the standard web conference tool with this
on-line course.

Figure 4: QPlus – a COOL component that is used in the Bridges to China

QPlus demonstrates the importance of openness of course delivery systems. In this case, the
desired functionality requires access to student identification information and to student records
database of the system.

4.5 TAO

TAO, Text Analysis Object (Figure 5), is a new class of tool to analyze free text responses
from learners. The answer to a question consists of concepts and details, which can be scored
separately (http://www2.meu.unimelb.edu.au/oxygen/tools). Feedback is provided to help the
student get the concepts and details correct. TAO was developed for a medical project where
there was a need to analyze free text entries from on-line tutorials. Free text entry has always
been a challenge for computer assisted learning packages. The invention of major concepts
and minor concepts or details has helped to solve the problem for processing free text entries.
With this tool, the lecturer can predefine major concepts and minor concepts for each question.
With the major concepts and minor concepts defined, the tutorial system can provide informative
feedback to the students by saying what major concepts and details have been included in their
answer and by pointing out what they are.

TAO is one of the pedagogical innovations that show what commercial solutions can not provide.
Those kinds of innovations have to come from educational institutions. However, tools like
this one can be easily incorporated into a course delivery system if it is open and allows room
for third-party components.

Figure 5: An example of Text Analysis Object in use

364

Ji, Ip, Canale and Fritze

4.6 MCQ BUILDER

MCQ Builder is a server-side component implemented using OXYGEN (an online course authoring
engine, http://www2.meu.unimelb.edu.au/oxygen), which helps course instructors to compose
interactive multiple choice questions. The tool generates dynamic html and Javascript functions to
build interactive multiple-choice questions. The tool is easy to use. All it requires is to ask the user
to specify the question stem, the options, and the key for each question, and the scoring scheme.
Figure 6 is an example of a multiple-choice question generated by MCQ Builder.

Figure 6: An interactive multiple-choice question generated by MCQ Builder

The interactive multiple-choice question as shown in Figure 6 is implemented using dynamic
html. A user clicking on a wrong answer gets a cross. A tick and a score are received if a right
answer is clicked (the obtained score depends on the number of attempts). More informative
feedback can be implemented in a different version of this interactive multiple-choice question.
The facility for authoring this type of questions is not available with any course delivery system.
The need for interactive multiple-choice questions in the Bridges to China project has led to
the development of MCQ Builder. This tool aims at streamlining the process of generating
hundreds of interactive multiple-choice questions for this on-line course. The streamlining
process or tool is often needed for large-scale course development projects.

4.7 CLOZEBUILDER

The ClozeBuilder is a server-side software component that converts a color-encoded text into
a cloze exercise or test. Cloze tests are commonly needed in a foreign or second language
course. This COOL component was specifically developed to fulfil one of the requirements of
the Bridges to China project. The ClozeBuilder facilitates the authoring of cloze tests. Any
user capable of using a simple html editor like Symantec Visual Page, Claris Home Page, or
Microsoft Frontpage can simply highlight the words or phrases to be taken out using a consistent
color. The html page is then submitted to the ClozeBuilder for conversion ‘on the fly’.
ClozeBuilder searches for color-encoded words replacing them with underlined blanks. The
application randomizes those words to build a palette on the top of the text or passage. Finally,
Javascript functions are incorporated into the page to realize the ‘drag and drop’ functionality.
This functionality is implemented using dHTML, which is an enhanced version of HTML that
permits animation of screen objects. Again, this tool has been developed in response to specific
educational needs not to be found with any commercial course delivery system.

Figure 7: A cloze test generated by ClozeBuilder

ASCILITE ’98 365

Keep the Web Server Cool: A Proposal for Server-Side Object Development for Online Courses

4.8 COLLABORATION WITH CLIENT-SIDE OBJECTS

The component-based approach can be used to enhance the operation of independently
developed client-side objects. In Figure 8, an ‘Itemset’ tutorial-style question object is used to
provide open-ended question learning activities. The Itemset is developed as a scriptable Director
Shockwave movie as a component in the ‘Learning Engine’ object model (Fritze & Ip, 1998).
A question has been set up in the Itemset that will match student typed input against a set of
criteria, and in turn respond with appropriate feedback depending on the student entry. A problem
common to Shockwave and Java applets is that system-level Copy and Paste functions are
disabled for security reasons. This problem is solved here by calling an external ‘Text Edit’
COOL component. The Itemset creates the text edit window by passing a message in the form
of a URL via a simple JavaScript function on the page to the server. Text entered by the student
is retrieved from this window and evaluated by the Itemset object. Feedback is provided based
on performance against the criteria and is presented to the student in another COOL component,
the ‘Explanation’. The third COOL component used in this example is the MailTo component,
which provides a questionnaire form that is automatically emailed to a given address without
the student requiring a direct connection to an email system.

Figure 8: Shockwave tutorial object (top) inter-operating with COOL components

While it is possible to build all these functionalities into a single object, there are obvious
advantages in constructing learning activities out of smaller independent objects developed in
different software technologies. The ability to inter-operate is made practical by the simple
interface wrapper provided by the COOL framework.

5. CONCLUSION

The COOL framework would typically provide benefits to institutions where there are a number
of heterogeneous server systems in use. Software components developed natively for those
systems can be re-used by implementing a ‘wrapper’ so that any web system can take advantage
of them. The extent of their usability depends on the openness of the course delivery systems.
Closed systems can embed the COOL components, but extra functions and data storage are
often found to be replicated for them to function. The COOL components tend to work better
with open systems as their system variables, functions and backend databases are accessible.
Full integration of the COOL components has proven to be possible in open course delivery
systems.

366

Ji, Ip, Canale and Fritze

The adoption of the COOL framework will greatly enhance project development. Any
department or faculty following this approach will benefit by not only delivering required
software products but also providing a solid architecture of course development. The library
of server-side software components that becomes available from finished projects will be ready
for re-use in future projects. This will greatly reduce the cost of on-line course development.

Systems delivered following the COOL framework can be easily reconfigured and extended.
Any future enhancement can be added to the existing systems since they are pluggable.

6. REFERENCE

Fritze, P. & McTigue, P. (1997) Learning Engines - a Framework for the Creation of Interactive Learning
Components on the Web. http://www.curtin.edu.au/conference/ascilite97/papers/Fritze/ Fritze.html

Fritze, P. & Ip, P. (1998) Learning Engines - a functional object model for developing learning resources
for the Web. In T Ottman & I Tomek (Eds.), Proceedings of ED_MEDIA & ED-TELECOM 98
Conference (pp. 342-7). Freiburg: Association for the Advancement of Computing in Education.

Ip, A., Canale, R., Fritze, P. & Ji, G. (1997) Enabling Re-usability of Courseware Components with
Web-based Virtual Apparatus. http://www.curtin.edu.au/conference/ascilite97/papers/Ip/ Ip.html

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1996) Object-Oriented Software Engineering:
a use case driven approach, Addison-Wesley Longman Limited.

© Gangmeng Ji, Albert Ip, Ric Canale and Paul Fritze

The author(s) assign to ASCILITE and educational and non-profit institutions a non-exclusive licence
to use this document for personal use and in courses of instruction provided that the article is used in
full and this copyright statement is reproduced.

The author(s) also grant a non-exclusive licence to ASCILITE to publish this document in full on the
World Wide Web (prime sites and mirrors) and in printed form within the ASCILITE98 Conference
Proceedings. Any other usage is prohibited without the express permission of the author(s).

