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Abstract

StatPlay is a collection of computer-based demonstrations and interactive smulations intended to
promote cognitive change and good understanding of central aspects of statistics and experimental
design. StatPlay isintended for use in avariety of ways, including lecture demonstrations, by groups
and by individuals. In addition to free exploration, challenging tasks—some in game formats—offer
structure and guidance to the learner’ s activities. With support from the Committee for the
Advancement of University Teaching (CAUT) StatPlay is being developed in Visua C++ for
Windows. It currently comprises microworlds, or Playgrounds, for working with: discrete datasets;
continuous distributions; sampling; confidence intervals, and hypothesis testing. Recent development
has focussed on representations and activities that help students acquire good understanding of
confidence intervals, smple hypothesis testing, and the relation between these. We will demonstrate
the software, describe use of StatPlay by students and report an experiment evaluating students
conceptua change.
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1. StatPlay: Outline of rationale and design

The rationale and basic design of StatPlay were described by Thomason, Cumming and Zangari
(1994). We give abrief outline of this rationale then describe the software and discuss several design
issues closely tied to choice of how some fundamental statistical issues are presented pedagogically.

1.1 Satistical misconceptions: The Law of Small Numbers and statistical significance

Misconceptions of statistics and probability are widespread, resistant to conventional education and
have damaging consequences. Tversky and Kahneman (1971) presented evidence of afundamental
mi sconception about randomness. people generally underestimate the amount of variability from
sample to sample, overestimate the similarity of a sample to the population and under-estimate the
width of confidence intervals. They fail to reaise the crucial role of N, the sample size. Only when N
isvery large are samplesin generd closely similar to each other and to the population, and
experimental results repeat: thisisthe Law of Large Numbers, atheorem of mathematical statistics.
By analogy, Tversky and Kahneman concluded that people often behave asif they believein aLaw of
Small Numbers (LSN), a‘law’ of human behaviour easily shown to be discrepant with the world.



Misunderstanding of hypothesis testing has been discussed by Gigerenzer (1993), Oakes (1986) and
others. One problem is confusion between statistical significance and size or importance; another is
interpretation of non-significance as meaning the null hypothesisis true; another is the belief that
repegting an experiment with asignificant result islikely again to give significance. More basically,
significance is often wrongly interpreted as the probability the null hypothesisistrue rather than the
conditional probability of obtaining extreme resultsif the null hypothesisistrue.

We suggest two core issues underlie statistics misconceptions, and identify these as teaching targets:
* L SN misconceptions about sampling variability and the way this depends on N, and
» problemswith probability, especially conditional probability.

1.2 Naive Satistics: The analogy with Naive Physics

Naive physics refers to intuitive beliefs people use to guide their expectations about everyday events
(McCloskey, 1983). Some naive physics beliefs are persistent, but wrong. For example, many
people believe aforce is necessary for motion to continue, or that aball flying around on a string will
take a curved path after the string breaks. Traditional education diminishes the influence of naive
beliefs, but even physics graduates often have everyday expectations that accord with naive physics.

By analogy we introduced the term ‘naive statistics' for everyday beliefs about probability and
statistics (Thomason et al., 1994). Aswith physics, these beliefs seem to have arisen through normal
life experience. In both cases the naive beliefs are used, usually unconsciously, to guide everyday
expectations about the world: in one case about moving objects, in the other perhaps about reaching
conclusions after seeing a small sample—perhaps even just one or two cases. Becausethereislittle
research on teaching statistical concepts (Shaughnessy, 1992) we look for guidance to the analogy
with naive physics, and to science education generally.

1.3 Lessons from science education and naive physics

White (1993) described ThinkerTools, a collection of microworlds for 11-12 year olds learning
elementary physics, in which learners undertook modelling and game-like activities about forces and
moving objects. Children formulated and tested hypotheses, and confronted any mistaken beliefs.
White presented impressive evidence for the effectiveness of her approach. White expressed severa
recommendations succinctly: * Employ manipulable, linked representations for key abstractions. ...
Make the phenomena easy to see and interpret. ... Reify the knowledge to be acquired.” (pp. 49-50)
The most general lesson is the notion of conceptual change (West and Pines, 1985): learning will be
more successful if we take account of initial naive beliefs.

1.4 SatPlay: Design issues

StatPlay isintended to help learners replace naive statistics beliefs with correct conceptions. It is not
intended to provide a complete curriculum, but for use alongside textbooks and other software.
StatPlay should be usable for lecture demonstrations, by asingle learner and by a pair or small group.
Sampling variability isthe first concept addressed, as the basis for work on confidence intervals,
power and statistical significancetesting. Later we will address conditional and other probabilities.

We adopt as some of the central design principlesfor StatPlay:

»  Abstract symbolic representations should be used, and tied to graphic, concrete
representations the user manipulates. (Thisis White's * Reify the knowledge...” principle.)



« Multiple representations are needed to integrate theoretical and practical understanding:
multiple representations yoked together offer a powerful strategy, and facilitate transfer to the
real world.

* Interest and engagement should be maximised; game formats can be valuable.
» Guidance for structured learning activities and on-line advice should aways be available.

» The software should fedl open, and encourage learner choice, initiative and exploration.

2. StatPlay: The current implementation

StatPlay is being developed in Visua C++ under Windows. Four microworlds, or playgrounds,
have been implemented. These are described briefly below and illustrated in the Figures.

2.1 The Data Playground

A smplelist of data valuesis shown (see Figure 1) also as an ordered list, afrequency histogram and
adot plot. These four representations or views are linked: select by mouse any data values or values
in one view and see the corresponding valuesin all four representations highlighted. A learner can
enter their own dataset, load a set from disk or generate a set from one of severa distributions. A
wide variety of display options and activities are available. Learning aims include understanding of
frequency histograms, dot plots, arange of descriptive statistics, percentiles and z-scores.

2.2 The Continuous Distribution Playground

Figure 2 shows anormal distribution, but a distribution of any shape may be investigated. Numeric
values of mean, SD, skew and tail probability can be shown. Dragging handles (small squares on the
X and'Y axes) causes the display to change smoothly: it ‘feels plastic under your mouse fingers .

The numeric values change dynamically aso; multiple representations (curve and numeric values) are
thus coupled. Typing in new values causes the curve to change, so the linking is symmetric.

In the game formats you compete against the clock, and possibly a second learner, to estimate the
mean and SD of any continuous distribution, or areas and z-scores. Y ou are confronted with
feedback from mistaken estimates and can guess again.

2.3 The Sampling Playground

The Sampling Playground isthe first part of our attack on LSN. It shows in the upper part of the
screen the population and in the lower part some representation of samples taken (Figures 3-5). Data
panels give information about the population, the sampling process, and the current state. Therate
dider allows choices ranging from slow step-by-step sampling to rapid taking of a series of samples.

In Figure 3 each line in the scrolling window shows a dot plot of one sample and its mean (inverted
triangle). Meansvary greatly, as expected with asmall sample size (N = 4). Figure 4 shows
confidence intervals (shaded bars) for the population mean (vertical line). Figure 5 givesan
aternative view, for N = 20: two frequency distributions are shown—that of all 2000 values and that
of the 100 means. This sampling distribution has approximately anormal distribution, illustrating the
Central Limit Theorem. The scrolling window or the frequency distribution view can be watched as
it changes dynamically during repeated sampling, with rate under control of the dider set by the user.



If the number of samplestaken is set to infinite, the frequency distribution representation shows that
the distribution of individual values matches the population shape exactly, while (for most continuous
population distributions) the sampling distribution appears smooth, and approaching normality.

2.4 The Hypothesis Testing Playground

If the data come from a distribution that exists in the computer, this distribution can remain hidden
(the upper dark panel in Figure 6) or can be displayed. Meanwhile the user conjectures adistribution
(the Null Hypothesis for example) and the sampling distribution derived from thisis shown in the
middle panel, allowing the sample—shown as a dot plot at the bottom—to be used to make a
hypothesis test of the conjectured distribution.

3. Key design issuesfor statisticslearning
3.1 Probabilistic simulations and the Law of Small Numbers

Demonstrations and simulations in physics and most other sciences are deterministic: on repetition
exactly the same thing should occur. In striking contrast, ssimulations of sampling and other
probabilistic processes must vary from occasion to occasion, showing regularity only in the long run.
So, if alearner simply takes one or two samples, appreciation of vital aspects of sampling, such as
the likely discrepancy between sample and population, and the extent of variation from sample to
sample, may well not be illustrated in any dramatic way.

In fact the learner’s LSN misconception is likely to impede understanding: the learner will, under the
influence of LSN itself, jump to a conclusion on the basis of the first, or the first few samples seen,
even though these are likely by chance to give an erroneous impression. Belief in LSN thus seemsto
be self-perpetuating, as Tversky and Kahneman (1971, p. 109) noted.

There isfundamental conflict between our desire to work with single cases and single samples to
keep things simple and concrete for the learner, and the necessity to consider rarefied concepts such
as ‘the set of infinitely many samples'. Difficult entities such as this underlie the idea of variability
from sample to sample, which is the key concept that LSN severely under-estimates, or failsto
recognise.

The difficulty can be stated simply: the appeal and potency of learning environments lie in the use of
simple, concrete events. Many fundamental statistical ideas, however, are broad properties of sets of
events. Furthermore, they are uncertain or variable properties. Our example so far has been the
variation from sample to sample but the point applies also to conditional probabilities and even to
simple probabilities, asin Shute and Gawlick-Grendell’ s (1993) Stat Lady: appreciating a probability
of 0.70 for example requires consideration of a sequence of trials. Thefirst few trials by themselves
are likely to give amideading idea of the probability and, crucialy, if further trials are then observed
theinitial concept will probably not be revised sufficiently to take account of the later observations
(the *anchoring effect’; Nisbett and Ross, 1980). How can we retain the concreteness of the single
trials, present a powerful representation of the higher-order concept, and tie these two together?

Our approach to overcoming the LSN trap has been to provide in the Sampling Playground the two
representations of sets of samples shown in Figures 3 and 5, and to give the user great control over
the sampling process. Using the dot plot representation of Figure 3, and the Sampling Rate dlider set
to the left, taking a single sample can be observed as a multi-step process, emphasising concretely the
individual values obtained and the variation or ‘clumpiness within this one sample.

Further single samples can be taken, then the rate can be increased further and a sequence of hundreds
of samplestaken quickly, with the dot plot or cumulating distributions (Figure 5) representations



developing as you watch. We thus aim to offer representations of sets of many samplesthat are (i)
easly understood in terms of the single samples they are made of, and yet (ii) exhibit the higher-order
features—such as great sample-to-sampl e variability—that learners need to grasp.

3.2 Confidence Intervals

A series of samplesis sometimes shown in statistics textbooks and teaching software (e.g.

Models' N’ Data, Stirling 1993), with the confidence interval for each sample indicated, and the extent
of variation from sample to sample emphasised. Thisisavaluable approach but we are concerned
that it isinsufficiently concrete, and insufficiently tied to the sample values themselves and to the
sampling process. Figure 4 shows our representation of confidence intervals. Our hopeisthat by
presenting confidence intervalsin the Sampling Playground they can be seen as concrete in relation to
any single sample, yet also as forming a probabilistic pattern over along series of samples. In other
words, single-concrete-to-overall-patterning understanding of confidence intervals should follow
corresponding development of understanding of sampling, as discussed above.

3.3 Hypothesis Testing

One key difficulty isto realise that a hypothesisis precisely that—the user’ s conjecture, and al tail
areas or significance levels are probabilities conditional on that hypothesis. In developing our
Hypothesis Testing Playground (Figure 6) we are aiming to separate clearly the true state of the
world—the distribution from which the sample actually came—from user hypotheses. The user can
derive a sampling distribution from any conjectured distribution, and use this as the basis for
hypothesis testing with the single sample. These are the principles on which further development of
this playground is being based.

4. StatPlay in use

A class of second year psychology undergraduates saw a brief lecture demonstration using StatPlay,

thenin atutorial used it in pairs, with brief guidance from worksheets. The exercise was arranged as
asingle-group, pretest-posttest quasi-experiment (Cook and Campbell, 1979), with pencil-and-paper
assessment of the accuracy of severa student intuitions.

One goa was for students to improve their conceptions of sampling variability, the standard error,
and how these vary with N. A sengitivity index, where 1.0 means no sensitivity to N and 1.78 means
appropriate sengtivity, increased from 1.07 before the lecture to 1.61 after the tutorial, giving initia
encouragement that our approach isfruitful.
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Figure 1. The Data Playground, showing four views of the same dataset: list of values, ordered list,
frequency histogram and dot plot. The percentile cursor is positioned at 26.1%, with values below
the cursor highlighted in al four views. The triangles and arrows show mean, median and s.d.

Figure 2. A normal distribution in the Continuous Distribution Playground: z-scores are indicated by
vertical lines and symmetric tails are shaded. Probabilities, z, and X values are shown for the tails.

Figure 3. The Sampling Playground. Some of a series of samples from the upper population
distribution are shown, as dot plots, one sample per line in the lower scrolling window. Sample
means (inverted triangles) vary widely because the sample size, N = 4, is so small.

Figure 4. The Sampling Playground. The series of samples shown in Figure 3, now with the 95%

Confidence Interval for the population mean (vertical line) shown as a shaded bar for each sample.

There are button click options to show confidence intervals based on z (known population s.d.) or t
(unknown population s.d.), and for various levels of confidence from 80% to 99%.



Figure 5. The Sampling Playground. A seriesof 100 samples of size N = 20 was taken. The dark
distribution is the cumulation of al 2000 data points; the light distribution is the sampling distribution
of the 100 sample means, approximately normal as expected by the Central Limit Theorem.

Figure 6. The Hypothesis Testing Playground, currently at an early stage of development. The true
population may be hidden or shown in the upper panel; the sampling distribution under a
hypothesised distribution appears in the middle, and the sample is shown as adot plot below.



