
IDENTIFYING A NEED FOR WEB-BASED COURSE SUPPORT
Affleck, G. and Smith, T.

CIS,
University of Paisley

Paisley , Scotland, U.K.

Email: {affl-ci0, smit-ci2}@paisley.ac.uk

Abstract
The focus of this paper is web-based course support for novice computer
programmers. The findings from interviews and a test are considered and the
problems found are subsequently related to the learning paradigms of constructivism
and objectivism. Finally, recommendations are made for the incorporation of web
based course support.

Keywords

Education, world wide web, novice computer programmers, objectivism, constructivism,
active learning.

1. Introduction

Education has seen several technologies that at advent promised much for education such
as:

• Radio
• Television
• Computer aided learning

Each time we have seen an initial explosion of research heralding a new way in which
education will be delivered and students will learn. However, the traditional means of
higher education (the lecture driven approach) remains dominant. These technologies
have been assigned a relatively minor role, most notably in distance education.

The current technology being heavily researched as an educational platform is the World
Wide Web. The mass of information and the ease of access and communication would
seem to some to be a natural revolution for education. However, the reality for education
may be no more than a simple transfer of one medium for another, the learning
experience remains unchanged and the faults within that learning experience may become
all the more apparent without social support if attempts are made to replace the existing
structure.

It is proposed in this paper that the web can have role within the existing educational
structure rather than being seen as a replacement (as previous technologies). This role is
to provide the course support for existing courses to solve problems that arise within
courses that are not easily solvable within the existing structure.

The subject chosen for this study is computer programming. This subject has proved a
difficult one to teach at novice level within the educational system. This study focuses on
an existing course that has an element of computer programming. The successful
provision of web based course support requires the identification and satisfaction of the
needs of students and tutors. These will be needs and problems that are not easily
rectified within the existing course provision for particular courses.

Research on teaching and learning computer programming indicate that novice
programmers have several difficulties with computer programming concepts such as
looping, variables, iteration, and manipulating values in computer memory (Putnam et al.
(1986), Segal et al. (1992), Du Boulay (1986), Joni & Soloway (1986))

This study consisted of a series of qualitative interviews which were conducted in an
attempt to discover the problems that students found in a normal learning environment.
Initial interviews with 9 students consisted of one to one at the computer as the student
worked through the course lab sheets with the interviewer taking notes on misconceptions
and feelings. Following this initial phase of problem finding a small test was given to
approximately half the students on the course in order to investigate how many of the
problems identified generalised to the rest of the course. The majority chosen for the test
were from those that had chosen to carry on to a subsequent course involving
programming and all of whom had passed the course assessment. Subsequently a total 43
people were interviewed with 26 interviewed on more than one occasion. The majority of
the students were enrolled on a postgraduate conversion course. All interviews were
conducted on a one to one semi-structured basis. Notes were taken, transcribed and
analysed for common occurrences of misconceptions and phenomena.

2. The test

The test consisted of 4 questions and had no time constraints. The format was closed
book with the questions being as follows:

In the first question the students were asked to describe isolated statements of code.

In the second question the students were asked, "What is a method?"

The third question tested understanding of and required a description the outcome of a
selection statement.

In the fourth question the students were asked to "Write program code to ask a user for a
name and print it to the screen 5 times."

The questions were graded as:

1. Correct
2. Partially correct answer
3. Incorrect
4. No (serious) attempt made

The results

Table 1: Results

 Correct Partially
correct

Vague No attempt

Q1 "isolated lines of code" 8 14 10 15

Q2 "What is a method?" 7 1 13 26

Q3 "selection statement" 10 2 14 21

Q4 "Write program code" 10 9 9 19

These results show that more than half of the students on the course did not gain a basic
knowledge of programming and were unable to perform simple programming tasks or
read control flow statements correctly. For a large section of the students on the course
basic concepts were not understood and could not be applied.

5. Comparison of the results with related research

Several other studies have shown similar findings of novice programmers and research on
teaching and learning computer programming indicate similar problems to this study and
that novice programmers have several difficulties understanding computer programming
concepts:

Putnam et al. (1986) found that high school students in beginning BASIC programming
courses had eight areas of misconception:

Assignment statements
Print statements
Read statements
Variables
Loop construction
If statements
Other control flow
Tracing and debugging

Segal et al. (1992) indicated that students had major difficulties using the semi-colon
which is the sequencing operator of the programming language.

Du Boulay (1986) identified five general areas of problems for novice programmers:
1. Basic orientation (finding out what programming is.for)
2. Understanding the general properties of the machine
3. Formal language notation
4. Standard structures
5. Mastering the pragmatics of programming

Joni and Soloway (1986) indicated that a poorly constructed working code is often
produced by novice programmers. That is novice programmers tend not to focus on the
principle of program readability.

6. Interpretation of the interviews and the test

From the results of the test it can be seen that more than half of the students struggled
from the start and made no real progression and from the interviews this is interpreted as
being generally attributed to two prime factors:
• prior knowledge
• approach to study

Prior knowledge is cited in many learning theories as being of the utmost importance to
the learner most notably with the constructivists Jonassen, D. H. (1992) who maintains all
learning is built from an interaction with prior experience and current environment and
therefore all learning is being built on structures that already exist. Therefore, for optimal
learning the learning environment should access the student's prior knowledge and start
to build upon it. Prior knowledge was an important factor in this study, with many
complaints from students that vocabulary and terminology was used but not explained.
Students also complained of being expected to know things already and of concepts out
of context and being too abstract. Levels of knowledge and transfers of knowledge that
may have seemed obvious to the lecturer were not noticed by the student and caused
problems for understanding. The structuring of knowledge became difficult as only
isolated pieces of information were being remembered with no real knowledge
framework emerging.

Approach to study was an important factor. Two main approaches emerged, the first of
which was an approach to read and understand through memorization but very little
active involvement in actually writing programs. Those interviewed who didn't learn very
well all adopted this approach.

The combination of the two variables (approach to study and prior knowledge) seemed to
lead to other problems some students encountered:
• A perceived need to keep up with the lab sheets (and peers) , moving on without

gaining an understanding.
• Ambiguities in the course material meant labs were difficult to complete alone.
• A feeling that the lab exercises had simply become typing exercises.
• Feelings of stress and annoyance due to growing disillusionment with the course.
• Group work caused problems such as working and achieving at different rates, having

different goals. Coping strategies increased as confidence deteriorated.
The second approach was a more active involvement of trying things at the computer
such as writing small programs and doing exercises. All the students interviewed who
had learned how to program well both had adopted this approach and talked of hard self-
study and struggling to understand (learning programming had not come easy for any).

7. The need for web based support

The way people view the world and the acquisition of knowledge will not only affect the
approach of the learner to learning but also the tutor to teaching and the designer to
course development. Therefore a major consideration for the practical application of web
based course support is the influence of Learning Paradigms on the learner and the
learning environment.

The Objectivist paradigm became the dominant paradigm in educational disciplines
through the success of behaviourism with such as Skinner and programmed learning. The
theoretical goal of behavioural psychology is the prediction and control of behaviour as it
attempts to discover lawful causal relationships between input stimuli and output
response, which it assumes, will be the same across all organisms. Instructional design
based on bahaviourism aims to provide methods that break down complexity of a
knowledge domain into components that can be analysed, understood and transmitted to
another person. This knowledge is repeatable and can therefore be accepted by everyone.
The goal of instruction within such an environment is therefore for the student to gain the
correct propositional structure. All students start at the same level and are presented with
the same information and are therefore expected to learn the same knowledge. Students
who fail to learn are seen as being less capable. The effectiveness of teaching is measured
in how well students can replicate instructions. The designer of instruction is able to
make abstraction of knowledge from context, a generalisation that people can learn and
then transfer to new situations. Testing stands apart from instruction and probes
knowledge acquired (depth and amount of processing stimulus events) in an objective
way. This paradigm leads both tutor and student to a view that knowledge is to be "told"
and memorised and therefore leads to the approach to learning adopted by those who only
try to read and memorise for understanding. This is reflected in several research studies
that showed it is difficult to fully develop students' programming knowledge through
traditional computer programming instruction (Cope and Walsh, 1990)

Recently, constructivism has been growing in popularity within education.
Constructivism is a paradigm that strongly promotes experiential, collaborative, student
centred, active learning. Constructivist roots are the re-discovered roots from Socrates,
Kant, Dewey, Vygotsky and Kuhn (Kang I, 1995)

Constructivists believe there is a real world (environment) that we experience. However,
an understanding of the meaning of reality is imposed by the individual rather a mirror
image copy of a reality that exists independently. This individual understanding is based
upon his/her perceptions and actively constructing knowledge by interpreting perceptual
experience in terms of prior knowledge, current mental structures and existing beliefs
(Jonassen D. H., 1992)

Therefore with meaning being an interaction between an individual's experience and the
individuals interpretation of the environment there are many ways to structure an
understanding with many individual perspectives for events and concepts, which help
build (construct) an understanding. Meaning is therefore imposed by the individual in

collaboration with the social environment rather than existing independently. Experience
must be examined to understand learning. Learning environments should be arranged to
encourage a process that promotes knowledge construction based on relevant experience
building on prior experience.

8. The need for a constructivist environment

What is the need of the constructivist environment? The traditional environment has been
around for a long time and obviously works as many people have learned how to program
from within it. So is there a need for a constructivist environment? The goal of an
educational environment whether objectivist or constructivist is to aid a student to gain an
understanding of a subject. Which way is best? The objectivist aim for economy and
simplification of the instructional process, and why shouldn't we simply tell students
what they need to know? On a taught course the "experts" have to an extent already
negotiated the understanding a student is trying to achieve. This pre-negotiated meaning
may therefore be perceived by the student as the "correct" objective view, of which they
will be told, expected to memorise and tested on. It is this pre-negotiated meaning that
objectivist educators are trying to transmit to students. Students therefore are not entirely
free to gain their own understanding. On a taught course they will have to gain an
understanding that is compatible with the person who will mark their papers or risk losing
marks.

If knowledge cannot be transmitted, information can. Prior constructions that are
reconstructed may make what appears to be direct transmission of information possible
through the use of previous constructions. Transmittable information may be
understandable if prior constructions support it. If I told you my name was Glenn you
could use a prior construction (of the concept name) to understand what this information
meant. This information would only be meaningful to you if you had constructed the
concept of name and how to use it. If no prior construction had existed it would require a
more extensive constructive process. Therefore, knowledge can be told to a certain extent
and transmission is part of the learning environment from which people gain the
information from which to construct knowledge. New concepts and structures can and are
taught explicitly, for example through the use of metaphors and analogies new domains
can be structured from old using prior constructions. Therefore as the objectivists would
point out students can and do sit in lectures and gain the intended knowledge (even if it
requires the listener to reflect and construct rather than record). Requirements can also be
made explicit and therefore the student will know what is to be constructed.

However, conceptual understanding cannot be gained from transmitted information if the
concepts or the processes connecting the concepts involved cannot be made explicit and
brought onto the social plane, or when there is no prior constructions to structure the new
knowledge. A distinction was made between explicit and implicit knowledge by Tulving
(Eysenck M. W., Keane M, T, 1990). Implicit knowledge unlike explicit knowledge
cannot be easily "told" and implicit procedural knowledge is built by doing. This implicit
knowledge cannot be transmitted. With a subject such as computer programming there is

a great deal of implicit, intuitive knowledge that experts find difficult or impossible to
make explicit and therefore cannot be directly transmitted as information for the student
to construct knowledge from. The experts simply cannot make verbal this type of
experiential knowledge nor could it be understood through only verbal form. For the
constructivist, each field has a unique way of knowing which will involve large amounts
of intuitive knowledge. In gaining knowledge and becoming competent in a domain it is
therefore necessary to go beyond the explicit information given and to construct
experiential implicit knowledge.

Constructivism therefore offers a new challenge for instruction and for the application of
course support on the web. The challenge is to develop ways of organising learning that
allows the contextual practice that is necessary to construct intuitive skills and knowledge
that cannot be gained through explicit means. However it is obvious that the
constructions have to be made by the learner themselves in an active, motivated manner.
The learning environment must be one which promotes constructive learner, a student
motivated to actively construct knowledge rather than simply passively receive and
memorise.

9. Recommendations

The main problems found in the study that students have with learning to program is
accessing prior knowledge and adopting an approach to study that will go beyond
memorising explicit knowledge to constructing implicit knowledge necessary to apply
and transfer the domain concepts to new situation. It is these problems that course
support will need to help solve. Recommendations (based on research to date) for what
the implementation of course support should concentrate on are:

Recommendation 1: Stimulate prior knowledge

Stimulating prior knowledge can and should be made explicit, and may be achieved
through the use analogies and metaphors, thus using an old environment to structure the
new and building on what is already known. This is a constructivist principle but the
traditional objectivist environment can continue to be used to teach knowledge that can
be made explicit. Visualisations of analogies can be achieved by using computer
simulations that can show the concepts in everyday use and compare them to the use in
the new domain.

Recommendation 2: Structure the learning

Learning should be structured within the student's developmental range. When new
concepts cannot be based on explicit prior knowledge (as with implicit procedural
knowledge) it will require the student to gain first hand experience of the environmental
domain which is needed to interpret and to construct new concepts.

Simulations and worked examples can be used to provide visualisations and make
abstract concepts more concrete.

Simulation can be based on:

• Line by line descriptions of program flow.

• Visualisations of the interactions between program code, input, output and memory.

• Exercises to develop debugging skills, program reading skills and program writing
skills.

Recommendation 3: Apply concepts to new situations/problems

The concepts learned should be applied using a task/problem solving approach. The
Problems/task presented should again be within a students developmental range.

Using the concepts of a domain and applying them to different situation can aid transfer
and build up flexible knowledge (Spiro et al. (1992)) of the type of implicit procedural
knowledge that expert programmers possess. Initially the concepts should be applied to
problems that the student already understands well so the initial concentration is not on
the problem itself but the application of the domain concepts to the problem.

Recommendation 4: Promote an active constructive learner

Learning is dependent on the learner interacting with the environment. At all stages of
learning the learner needs to be actively constructing knowledge instead of passively
memorising. The environment does not construct the knowledge, the student does. We
can however ensure that the optimal amount of stimulus information is available for the
student to construct the knowledge and the encouragement to active construction for the
information.

Recommendation 5: Improve communication between student and tutor

Communications between tutors and students needs to be improved. Often the tutors on
large courses may have little idea of individual student ability. The students themselves
may be embarrassed of their lack of knowledge and ability. The web should be used to
overcome these problems by providing the monitoring of student progress and
communication between student and tutor as needed.

Recommendation 6: Maintain a database of misconceptions

A database of misconceptions and solutions should be maintained. If a large amount of
students are having the same misconceptions it could lead to course rewrites or area to
concentrate on. Students can query the database to find a solution to problems they are
having as needed. The web and database connectivity will allow students access to

different depths of instruction this should allow students to gain as much or as little help
as they need.

10. Current and future research

Current research is being carried out on an initial implementation of the course support
application which uses an "Add-In" to extend the programming environment and has
been designed to provide (from within the programming environment) specific course
help to implement the recommendations made. The students have access to web page
help, tutorial explanations, exercises and contact to the tutor, with a database of
misconceptions being maintained. The course help can be accessed by the students from
either the university intranet or via the internet. This course help is currently being
evaluated. Future research will include the incorporation of an "intelligent pedagogical
agent"

(a subset of software agents) to help provide the user interface, monitor student
behaviour, monitor student progress contacting the human tutor as needed, provide
emotional support, provide communication with tutors and peers as well as acting as an
assistant tutor and advisor to help scaffold the individualized learning environment.

References
Cope, P. and Walsh, T. (1990) 'Programming in schools 10 years on'. Journal of Computer Assisted Learning, 6, 119–127.
Du Boulay, B. (1986) 'Some difficulties of learning to program'. Journal of Educational Computing Research, 2(1), 57–73.
Eysenck, M.W. and Keane, M.T. (1990) Cognitive psychology: A Student's Handbook. Erlbaum, pp. 250–251.
Jonassen, D.H. (1992) 'Evaluating constructivist learning', in Duffy, T.M. and Jonassen, D.H. (eds) Constructivism and the

Technology of Instruction: A Conversation, pp. 137–148.
Joni, S. and Soloway, E. (1986) 'But my program runs. Discourse rules for novice'. Programmers Journal of Educational Computing

Research, 2(1),95–125.
Kang, I. (1995) The Constructivist Principles and the design of Instruction, PhD Dissertation Indiana University, p. 22.
Putnam, R.T., Sleeman, D. Baxter, J.A. and Kuspa, L.K. (1986) 'A summary of misconceptions of high school basic programmers'.

Journal of Educational Computing Research, 2(1), 459–472.
Segal, J., Ahmed, K. and Rogers, M. (1992) 'The role of systematic errors in developmental studies of programming language

learners'. Journal of Educational Computing Research, 8(2), 129–153.
Spiro, R.J., Feltovich P.J., Jackobson, M.J. and Coulson, RL. (1992) 'Cognitive flexibility, constructivism and hypertext random

access instruction for advanced knowledge acquisition in ill-structured domains', in Duffy, T.M. and Jonassen, D.H. (ed.)
Constructivism and Technology of Instruction a Conversation, Hillsdale, New Jersey: Lawrence Erlbaum Associates, pp. 57–75.

© Affleck, G. and Smith, T.
The author(s) assign to ASCILITE and educational non-profit instiutions a non-exclusive license to use this document
for personal use and in course of instruction provided that the article is used in full and this copyright statement is
reproduced.
The author(s) also grant a non-exclusive license to ASCILITE to publish this document in full on the World Wide Web
(prime sites and mirrors) and in printed form within the ASCILITE99 Conference Proceedings. Any other usage is
prohibited without the express permission of the author(s).

